The Herd Behavior Index: A new measure for the implied degree of co-movement in stock markets

Jan Dhaene, Daniël Linders, Wim Schoutens, David Vyncke

KU Leuven, Leuven, Belgium
UGent, Gent, Belgium

ABSTRACT

We introduce a new and easy-to-calculate measure for the expected degree of herd behavior or co-movement between stock prices. This forward looking measure is model-independent and based on observed option data. It is baptized the Herd Behavior Index (HIX).

The degree of co-movement in a stock market can be determined by comparing the observed market situation with the extreme (theoretical) situation under which the whole system is driven by a single factor. The HIX is then defined as the ratio of an option-based estimate of the risk-neutral variance of the market index and an option-based estimate of the corresponding variance in case of the extreme single factor market situation.

The HIX can be determined for any market index provided an appropriate series of vanilla options is traded on this index as well as on its components. As an illustration, we determine historical values of the 30-days HIX for the Dow Jones Industrial Average, covering the period January 2003 to October 2009.

1. Introduction

"Men, it has been well said, think in herds, it will be seen that they go mad in herds, while they only recover their senses slowly, and one by one". Charles Mackay (1841).

Systemic risk in financial markets has become a major focus of financial players, regulators, policy makers and market supervisors. It captures the danger of a collapse of the financial system and the devastating consequences for financial markets and society as a whole. An objective estimation of the degree of systemic risk is of utmost importance as it may give the different stakeholders insight and an opportunity to take the necessary actions. The degree of co-movement (or herd behavior) of asset prices in financial markets is one of the indicators for systemic risk potential. In this paper, we propose a new measure for the implied degree of co-movement of asset prices which can be determined from available option data. Although hereafter we will restrict to stock markets, the proposed methodology can be applied to any market index provided an appropriate series of vanilla options is traded on this index as well as on its components.

The volatility of a stock market index is determined by the volatilities of the index components as well as by the dependence structure among them. Higher individual volatilities and/or stronger positive interdependences will increase the index volatility. A stronger positive dependence structure is a sign of less diversification and a higher degree of herd behavior. Bubbles and crashes may be explained in terms of herd behavior. The tulip mania in the Netherlands in the 17th century, the internet bubble around 1995–2000 and the US housing bubble which peaked in 2007 are textbook examples of bubbles driven by greed and by strong herd behavior. All these bubbles lead to major crashes in the relevant markets. Crashes in financial markets typically occur when individuals are driven by panic and join the crowd in a rush to get out of the market, leading to dramatic price movements (firesales). The late-2000's financial crisis following the US housing bubble is an example of this phenomenon.

Although herd behavior is often irrational, having information about its magnitude is significant in that it gives insight into the degree of diversification that is obtained by investing in the market index. Similar to volatility, the degree of herd behavior may be changing over time in a random manner, which makes it a hard task to estimate it from past data. Derivative instruments take a forward looking view and their prices contain information on the market participants’ perception on the future evolution of the market. A standard approach is to determine the volatility of a stock or a stock index that is implied by today’s market prices of traded options. In a somewhat similar way, we will define and investigate a new barometer for the expected degree of herd behavior as implied in today’s option quotes on individual stocks in combination with option prices on the corresponding index.

© 2012 Elsevier B.V. All rights reserved.
The definition of the Herd Behavior Index (HIX) is based on the idea that the market’s perception on the degree of co-movement of future stock prices should be measured by comparing the actual dependence structure between the future stock prices with the comonotonic dependence structure, under which the whole system is driven by a single factor. To be more precise, the HIX is defined as the ratio of an option-based estimate of the risk-neutral variance of the market index and an option-based estimate of the corresponding variance in this (theoretical) extreme market situation. The HIX can be interpreted as a scaled variance index, with a time-dependent scaling factor. The observed index option prices are used to describe the real market situation, while the theory of comonotonicity allows us to describe the extreme situation in the observed stock option quotes.

The HIX is intrinsically related to dispersion or herd behavior trading and hedging. Intuitively stated, when the herd behavior index is large, there is not much diversification possible and index options are relatively expensive compared to the individual stock options. Therefore, a high value of the HIX suggests to buy individual options and sell index options. The position can then be profitably closed when the market relaxes and the HIX decreases.

On the other hand, if the HIX is low but an investor is worried about the impact of potential herd behavior, he could enter in the opposite trade to hedge against co-movement exposure. One of the advantages of using the concept of comonotonicity to measure the degree of herd behavior is that it allows to specify the optimal portfolio of individual options one should buy in case of a high value of the HIX.

This paper is organized as follows. In Section 2, we describe the financial market which is assumed throughout this paper. Essential results concerning the theory of comonotonicity that are used in this paper are recapitulated in Section 3. Using the concept of comonotonicity, the theoretical case of a market with perfect herd behavior is described in that section. In Section 4, we define the HIX and compare it with other possible indices for measuring herd behavior in stock markets. In particular, it will be shown that the HIX outperforms correlation as a measure for co-movement. We also describe the CIX as a closely related measure for co-movement of stock prices. In Section 5, numerical issues concerning the practical calculation of the HIX are considered. In Section 6, we empirically investigate herd behavior by calculating historical HIX-values for the Dow Jones Industrial Average over the period January 2006–October 2009.1 Section 7 concludes the paper.

2. The financial market

2.1. Stocks, the market index and options

We assume a financial market2 where n different (dividend or non-dividend paying) stocks, labeled from 1 to n, are traded. Current time is 0, while the time span under consideration is T years. The price at time t, 0 ≤ t ≤ T, of stock i is denoted by $X_i(t)$. Hereafter, we will always implicitly assume that $X_i(t) ≥ 0$ for all i and that its first and second order moments are finite. The standard deviation of $X_i(t)$ is denoted by $\sigma(X_i(t))$. Pearson’s correlation coefficient between $X_i(t)$ and $X_j(t)$ is denoted by $\text{corr}(X_i(t), X_j(t))$.

The market index is composed of a linear combination of the n underlying stocks. Denoting the price of the index at time t by $S(t)$, 0 ≤ t ≤ T, we have that

$$S(t) = w_1X_1(t) + w_2X_2(t) + \ldots + w_nX_n(t),$$

where w_i, $i = 1, 2, \ldots, n$, are positive weights that are fixed up front. The standard deviation of $S(t)$ is denoted by $\sigma(S(t))$.

We assume that market participants have access to a number of European options with maturity T. More precisely, they can trade in European calls and puts on the index and on the individual stocks. The pay-off at time T of a European call on the index, with maturity T and strike K, is given by $(S(T) − K)_+$, whereas the pay-off of the corresponding index put option is given by $(K − S(T))_+$. The time-0 prices of these index options are denoted by $C[K, T]$ and $P[K, T]$, respectively. Similar pay-offs and notations hold for calls and puts on the constituent stocks. In particular, the time-0 prices of calls and puts on stock i are denoted by $C[i, K, T]$ and $P[i, K, T]$, respectively.

It is assumed that the financial market is arbitrage-free and that there exists a pricing measure \mathbb{Q}, equivalent to the physical probability measure \mathbb{P}, such that the current price of any pay-off at time T can be represented as the discounted expectation of this pay-off. In this price-recipe, discounting is performed using r, which is the continuously compounded time-0 risk-free interest rate to expiration T, whereas expectations are taken with respect to \mathbb{Q}. For simplicity in notation and terminology, we assume deterministic interest rates. Notice however that all results hereafter remain to hold in case interest rates are stochastic, provided the discounting factor e^{-rt} is interpreted as the time-0 price of a T-year zero coupon bond and the pricing measure \mathbb{Q} is interpreted as a ‘T-year forward measure’ instead of a ‘risk-neutral measure’. The no-arbitrage condition gives rise to the following expressions for the option prices:

$$C[K, T] = e^{-rT}\mathbb{E}[C(X_i(T) − K)_+],$$

$$P[K, T] = e^{-rT}\mathbb{E}[(K − X_i(T))_+],$$

and

$$C[K, T] = e^{-rT}\mathbb{E}[(K − X_i(T))_+]$$

$$P[K, T] = e^{-rT}\mathbb{E}[(S(T) − K)_+].$$

In formulas (2) and (3), as well as in the remainder of this text, expectations (distributions) of functions of $(X_1(T), \ldots, X_n(T))$ have to be understood as expectations (distributions) under the \mathbb{Q}-measure. We will often call them risk-neutral expectations (distributions). Furthermore, the notations $F_{S(T)}(x)$ and $F_X(x)$ will be used for the time-0 cumulative distribution functions (cdfs) of $S(T)$ and $X_i(T)$ under \mathbb{Q}.

In order to avoid unnecessary overloading of the notations, hereafter we will omit the fixed time index T when no confusion is possible. For example, we will write $X_i, C[K]$ and $F_{X_i}(x)$ for $X_i(T), C[K, T]$ and $F_{S(T)}(x)$, respectively.

2.2. Risk-neutral stock price distributions

In practice, only a finite number of strikes are traded for each stock as well as for the index. Therefore, we assume that for stock i, $i = 1, 2, \ldots, n$, at current time 0, European call and put options with strikes $0 = K_i^0 < K_i^1 < \ldots < K_i^{m_i} < F_{X_i}(1)$ and maturity T are available in the market. The prices of these options are denoted by $C[K_i^j]$ and $P[K_i^j], j = 1, 2, \ldots, n; i = 0, 1, \ldots, m_i$. Furthermore, we assume that $F_{X_i}(1)$ is known and finite. We will denote this ‘maximal value’ of X_i by K_{i,m_i}. In reality, stock and call options may have an unbounded upward potential. However, for numerical reasons, we will enforce a finite upper bound which can be chosen arbitrarily large. The main results that we will derive hereafter will not depend on the choice of the K_{i,m_i}, provided they are chosen sufficiently large. For an optimal choice of the K_{i,m_i}, we refer to Chen et al. (2008).

If option prices $C[K]$ were available for any strike K, we could in principle deduct the implied risk-neutral distribution F_{X_i} of the stock X_i.
price of stock i at time T. However, as we assumed that there are only a finite number of traded strikes on the individual stocks, this distribution F_{X_i} is not completely specified. Following Chen et al. (2008) and Hobson et al. (2005), we solve this problem by replacing each F_{X_i} by the discrete cdf \tilde{F}_{X_i}, which is defined by

$$\tilde{F}_{X_i}(x) = \begin{cases} 0, & \text{if } x < 0, \\ 1 + e^{-T} C_i[k_{j+1} - k_{j}], & \text{if } k_{j} \leq x < k_{j+1}, \\ j = 0, 1, \ldots, m_i, \\ 1, & \text{if } x \geq k_{j+1}. \end{cases}$$

The cdf \tilde{F}_{X_i} is an empirical version of F_{X_i} which arises from approximating the partially known convex call option curve $C_i[K]$ by the piecewise linear convex function connecting the observed points $(k_{j}, C_i[k_{j}]), j = 0, 1, \ldots, m_i+1$. Denoting this piecewise linear function by $C_i[K]$, we find \tilde{F}_{X_i} from the following relation:

$$\tilde{F}_{X_i}(x) = 1 + e^{-T} C_i[x+]. \tag{5}$$

Obviously, any $C_i[K]$ is an upper bound for the corresponding call option price $C_i[K]$ determined by (2). Moreover, for the traded strikes K_i both values are identical.

The empirical distributions $\tilde{F}_{X_i}, i = 1, 2, \ldots, n$, can also be expressed in terms of traded put options prices. Indeed, taking into account the put-call parity

$$C_i[K] + e^{-rT}K = P_i[K] + e^{-rT}E[X_i], \quad K \geq 0, \tag{6}$$

we can transform (4) into

$$\tilde{F}_{X_i}(x) = \begin{cases} 0, & \text{if } x < 0, \\ e^{-T} P_i[k_{j+1} - k_{j}], & \text{if } k_{j} \leq x < k_{j+1}, \\ j = 0, 1, \ldots, m_i, \\ 1, & \text{if } x \geq k_{j+1}. \end{cases} \tag{7}$$

Notice that this expression for \tilde{F}_{X_i} also follows from approximating the partially known convex option curve $P_i[K]$ by the fully known piecewise linear function connecting the observed points $(k_{j}, P_i[k_{j}]), j = 0, 1, \ldots, m_i+1$. Denoting this piecewise linear function by $P_i[K]$, we find \tilde{F}_{X_i} from

$$\tilde{F}_{X_i}(x) = e^{-T} P_i[x+]. \tag{8}$$

We end this subsection by remarking that replacing the partially known pricing distributions F_{X_i} by the fully specified empirical pricing distributions \tilde{F}_{X_i} can be considered as a prudent strategy in the sense that \tilde{F}_{X_i} exceeds F_{X_i} in convex order. This means in particular that $C_i[K] \geq C_i[K]$ and $P_i[K] \geq P_i[K]$ holds for any stock i and any strike K.

2.3. Forward contracts and the variance of the index

Let S be the value of the stock market index at time T, while f is a function on the non-negative real numbers with an absolutely continuous derivative f'. Then $f(S)$ can be expressed as

$$f(S) = f(a) + f'(a)(S - a)_+ - (a - S)_+ + \int_0^a f''(K)(K - S)_+ \, dK + \int_a^\infty f''(K)(S - K)_+ \, dK, \tag{9}$$

where a is an arbitrary chosen positive real number; see Carr and Madan (2001). From (9) it follows that the pay-off of $f(S)$ at time T can be replicated via a static position in pure discount bonds and European options on the index. Indeed, the first term in the right hand side of this expression is the pay-off at time T of a static position in $f(a)$ pure discount bonds, each paying an amount of 1 at time T. The other terms are the pay-offs of static positions in European calls and puts with the index with maturity T. As an example, consider the first integral term which corresponds to a static position in $f''(K) dK$ puts for all strikes K less than a.

Consider now the swap contract of which one leg pays the buyer (i.e. the long party) the pay-off $f(S)$ at time T In exchange, the other leg pays the seller a fixed amount P at time T, which was agreed upon at the deal’s inception and set such that the price of the contract is 0 at time 0, i.e.

$$0 = e^{-rT}E[f(S) - P]. \tag{10}$$

This swap contract amounts to a T-year forward contract on a function f on the index. Taking expectations in (9), leads to the following expression for the time-0 forward price $P = E[f(S)]$ of this contract:

$$P = E[f(S)] = f(a) + e^{-T} f'(a) (C[a] - P[a]) + e^{-T} \left(\int_0^a f''(K)P[K] \, dK + \int_a^\infty f''(K)C[K] \, dK \right). \tag{11}$$

For more details on the interpretation of (9), we refer to Carr and Madan (2001) and the references therein.

Let us first consider the special case where $f(x) = x$ and $a = K$. In this case, (9) reduces to

$$S = K + (S - K)_+ - (K - S)_+, \tag{12}$$

while (11) leads to

$$P = E[S] = K + e^{-T} (C[K] - P[K]), \tag{13}$$

and the risk-neutral expectation $E[S]$ is the time-0 forward price of the index value at time T. The latter expression can be transformed in the well-known put-call parity for the index:

$$C[K] + e^{-rT}K = P[K] + e^{-rT}E[S], \quad K \geq 0. \tag{14}$$

Next, we consider the case where the function f is given by

$$f(S) = (S - E[S])^2. \tag{15}$$

Applying relations (9) and (11) to the function $f(S)$ defined in (15) and choosing $a = E[S]$ leads to

$$(S - E[S])^2 = 2 \left(\int_0^{E[S]} (K - S)_+ \, dK + \int_{E[S]}^\infty (S - K)_+ \, dK \right), \tag{16}$$

and

$$\text{Var}[S] = 2e^{2T} \left(\int_0^{E[S]} P[K] \, dK + \int_{E[S]}^\infty C[K] \, dK \right). \tag{17}$$

Hence, the risk-neutral variance of the index price at time T can be interpreted as the time-0 forward price of the contract with pay-off $(S - E[S])^2$ at time T. Furthermore, the pay-off of this contract can be replicated by a static portfolio consisting of calls and puts on the index.

Notice that a similar interpretation can be found for the variance of the index return $\frac{S - S(0)}{S(0)}$ by choosing $a = E[S]$ and

$$f(S) = \left(\frac{S - S(0)}{S(0)} - E \left[\frac{S - S(0)}{S(0)} \right] \right)^2 = \left(\frac{S - E[S]}{S(0)} \right)^2. \tag{18}$$

In this case, expressions (9) and (11) translate into

$$\left(\frac{S - E[S]}{S(0)} \right)^2 = \frac{2}{S^2(0)} \left(\int_0^{E[S]} (K - S)_+ \, dK + \int_{E[S]}^\infty (S - K)_+ \, dK \right), \tag{19}$$
and
\[
\text{Var} \left[\frac{S - E[S]}{S(0)} \right] = \frac{2e^T}{S^2(0)} \left(\int_0^{E[S]} P[K] \, dK + \int_{E[S]}^{+\infty} C[K] \, dK \right). \tag{20}
\]

For notational convenience, hereafter we will continue with the contract with pay-off (15).

In case the index option prices are known for all strikes, expression (17) can be used to determine the risk neutral variance of the index in a model-free way, i.e. based on observed option prices without making any model assumption. However, from here on we make the more realistic assumption that only a finite number of strikes are traded in the market. Let us first consider the traded put option strike price below \(E[S] \) by \(K_0 \). The traded index put option strikes below \(E[S] \) are denoted by \(K_{i-1} \), \(i = 0, 1, \ldots, h \) with \(K_i < K_{i+1} < \cdots < K_0 < K_h \leq E[S] \). The traded index call option strike above \(E[S] \) are denoted by \(K_i \), \(i = 1, \ldots, h \) with \(E[S] < K_1 < \cdots < K_{h-1} < K_h \). Inspired by the methodology that is used for calculating the VIX volatility index (see Chicago Board Options Exchange (2009)), we propose the following approximation, notation \(s^2(T) \), for the risk-neutral variance of the index price:

\[
\text{Var}[S] \approx s^2(T) = 2e^T \sum_{i=1}^{h} \Delta K_i \, Q[K_i] - (E[S] - K_0)^2. \tag{21}
\]

In this approximation, the \(\Delta K_i \) are related to the resolution of the strike grid. In particular, we have that \(\Delta K_i = K_{i+1} - K_i \) for \(i = 0, 1, \ldots, h \). For the lowest strike \(K_{h-1} \), however, \(\Delta K_i = K_h - K_{h-i} \), whereas for the highest strike \(K_0 \), we define \(\Delta K_0 = K_0 - K_h \). Furthermore, \(Q[K_i] \) is defined as

\[
Q[K_i] = \begin{cases}
 \frac{P[K_i]}{C[K_i]}, & \text{if } K_i < K_0, \\
 \frac{C[K_i] + P[K_i]}{2}, & \text{if } K_i = K_0, \\
 \frac{C[K_i]}{2}, & \text{if } K_i > K_0.
\end{cases}
\tag{22}
\]

The extra term \((E[S] - K_0)^2 \) in (22) is a contribution due to the discretization around \(E[S] \). A justification for the approximation used in formula (21) can be found in Appendix. Notice that approximation (21) for the variance of the index involves all available index call option prices at strikes larger than or equal to \(K_0 \) and all index put options at strikes lower than or equal to \(K_0 \). Also note that except for the strike \(K_0 \) we did not assume here that traded strikes for puts and call index options are equal.

3. Perfect herd behavior

3.1. Definition

A subset \(A \) of \(\mathbb{R}^n \) is said to be comonotonic if any pair of elements \(x \) and \(y \) of \(A \) are ordered componentwise, i.e. either \(x_i \leq y_i \) for \(i = 1, 2, \ldots, n \), or \(x_i \geq y_i \) for \(i = 1, 2, \ldots, n \) must hold. Intuitively, a comonotonic set is a 'thin' set of which all elements can be ordered from small to large. The random vector \(X = (X_1, \ldots, X_n) \) of the stock prices at time \(T \) is said to be comonotonic if it has a comonotonic support, which means that there exists a comonotonic set \(A \) such that \(P[A] = 1 \). Obviously, comonotonicity of \((X_1, \ldots, X_n) \) corresponds to an extremal positive dependence structure, where the increase of the outcome of the price of a particular stock \(i \) at time \(T \), goes hand in hand with an increase of the outcomes of all the other stock prices. This explains why the term comonotonic (common monotonic) is used.

Notice that we defined comonotonicity of \(X \) in the \(\mathbb{P} \)-world. Here, the \(\mathbb{P} \)-measure has to be interpreted as the real world probability measure, whereas the \(\mathbb{Q} \) measure corresponds to a pricing measure. As comonotonicity is defined in terms of the support of \(X \) and moreover, \(\mathbb{P} \) and \(\mathbb{Q} \) are equivalent measures, we have that comonotonicity in the \(\mathbb{P} \)-world is equivalent with comonotonicity in the \(\mathbb{Q} \)-world. For an extensive overview of the theory of comonotonicity, we refer to Dhaene et al. (2002b). Financial and actuarial applications are described in Dhaene et al. (2002a). An updated overview of applications of comonotonicity can be found in Deelstra et al. (2010).

Perfect herd behavior over a 7-year time horizon corresponds with a comonotonic dependence structure for the price vector \(X \), meaning that from today's point of view all stock prices at time \(T \) are driven by a single source of randomness: if one stock price will turn out to be large at time \(T \), all other stock prices will be large too. In practice, stock markets will never be comonotonic. Nevertheless, in this section, we pay attention to the comonotonic case, as we will need this extreme situation in the next section when defining a measure for the 'implied degree of herd behavior' in the stock market. In the next section, we will propose to measure the degree of herd behavior by comparing an appropriate linear combination of observed index option prices with the same linear combination in the corresponding comonotonic market situation.

Several characterizations exist for the notion of comonotonicity. In particular, one has that the vector \(X \) of the stock prices at time \(T \) with marginal distributions denoted by \(F_{X_i} \), \(i = 1, 2, \ldots, n \), is comonotonic if and only if

\[
(X_1, \ldots, X_n) \overset{d}{=} (F_{X_1}^{-1}(U), \ldots, F_{X_n}^{-1}(U)), \tag{23}
\]

where \(U \) is a uniform \((0, 1)\) r.v. and \(\overset{d}{=} \) is used to denote 'equality in distribution'. Furthermore, \(F_{X_i}^{-1} \) is the usual inverse of the cdf \(F_{X_i} \). Characterization (23) clearly shows that comonotonic risks are driven by a single risk factor and exhibit extremal herd behavior. The weighted sum of the components of the comonotonic vector defined in (23) is denoted by \(S^c \):

\[
S^c = \sum_{i=1}^{n} w_i F_{X_i}^{-1}(U). \tag{24}
\]

As mentioned in the previous section, the pricing distributions \(F_{X_i} \) are in general unknown. Therefore, hereafter we will often use the empirical distributions \(\bar{F}_{X_i} \) defined in (4) or (7) instead. In this case, the inverses \(\bar{F}_{X_i}^{-1} \) are given by

\[
\bar{F}_{X_i}^{-1}(p) = K_{l_i} \quad \text{if } \bar{F}_{X_i}(K_{l_i}) < p \leq \bar{F}_{X_i}(K_{l_i+1}), \quad j = 0, 1, \ldots, m_i + 1, \quad p \in (0, 1),
\tag{25}
\]

with \(K_{l_i} = -1 \), by convention. Furthermore, we introduce the comonotonic sum based on the empirical marginal distributions:

\[
\bar{S}^c = \sum_{i=1}^{n} w_i \bar{F}_{X_i}^{-1}(U). \tag{26}
\]

In the notation \(\bar{S}^c \), the superscript 'c' means that the terms in the sum are comonotonic, whereas the bar indicates that the empirical distributions \(F_{X_i} \) are used. Similar notational conventions are made for other symbols that we will introduce hereafter. Taking into account that the cdfs \(\bar{F}_{X_i} \) are fully known, we find that also the cdf of \(\bar{S}^c \) is completely specified at current time 0.

We will call \(\bar{S}^c \) the comonotonic index price at time \(T \). Obviously, \(\bar{S}^c \) is a synthetically created r.v., the outcome of which will not be observed. The cdf of \(\bar{S}^c \) will turn out to be useful because it can be interpreted as the 'extreme cdf' of the value of the index at time \(T \). Indeed, it is the cdf that coincides with the risk neutral
cdf of S, provided the risk neutral distributions of the stock prices X_i coincide with the empirical distributions \bar{F}_{X_i} and moreover, the stock prices (X_1, \ldots, X_n) are comonotonic.

Introducing the following notation:

$$\bar{F}_{X_i}^{-1}(0) = \min \{ K_{ij} \mid \bar{F}_{X_i}(K_{ij}) > 0 \} ,$$ \hspace{1cm} (27)

Linders and Dhaene (2012) propose the following algorithm for determining $F_\pi (K)$:

1. Using (4) or (7), determine all elements of the following set:

$$A = \{ \bar{F}_{X_i} (K_{ij}) \mid i = 1, \ldots, n \text{ and } j = 0, 1, \ldots, m_i \} \setminus \{ 0 \} .$$ \hspace{1cm} (28)

2. With the help of (25), calculate $\sum_{i=1}^n w_i \bar{F}_{X_i}^{-1}(p)$ for all $p \in A$.

3. For any $K \in \{ \sum_{i=1}^n w_i \bar{F}_{X_i}^{-1}(0), \sum_{i=1}^n w_i K_{i,m_i+1} \}$, calculate $F_\pi (K)$ from

$$F_\pi (K) = \max \left\{ p \in A \mid \sum_{i=1}^n w_i \bar{F}_{X_i}^{-1}(p) \leq K \right\} .$$ \hspace{1cm} (29)

4. For other values of K, $F_\pi (K)$ is given by

$$F_\pi (K) = \begin{cases}
0 & : K \leq \sum_{i=1}^n w_i \bar{F}_{X_i}^{-1}(0), \\
\min_{i} \bar{F}_{X_i} \left(\bar{F}_{X_i}^{-1}(0) \right) & : K = \sum_{i=1}^n w_i \bar{F}_{X_i}^{-1}(0), \\
1 & : K > \sum_{i=1}^n w_i K_{i,m_i+1} .
\end{cases}$$ \hspace{1cm} (30)

A question that may arise here is whether it is always possible or not to construct an artificial comonotonic market with pricing distribution of (X_1, \ldots, X_n) given by the distribution of $(\bar{F}_{X_1}^{-1}(U), \ldots, \bar{F}_{X_n}^{-1}(U))$. In order to answer this question, one has to investigate whether such an artificial market is still arbitrage-free. This question is considered in Dhaene and Kukush (2010) and Hobson et al. (2005).

3.2. Characterizations of perfect herd behavior

We introduce the following notations related to the comonotonic index price S^-:

$$C^i[K] = e^{-rT} \mathbb{E} \left((S^r - K)^+ \right) .$$

$$P^i[K] = e^{-rT} \mathbb{E} \left((K - S^r)^+ \right) .$$ \hspace{1cm} (31)

Notice that $C^i[K]$ and $P^i[K]$ cannot be interpreted as the prices of options that are available in the market; they should only be considered as functions of K.

The following theorem states a number of equivalent characterizations for non-negative r.v.'s (stock prices) to be comonotonic.

Theorem 1. Consider the vector $X = (X_1, \ldots, X_n)$ of non-negative r.v.'s with fixed cdf's F_{X_i}, $i = 1, 2, \ldots, n$. The following statements are then equivalent:

1. (X_1, \ldots, X_n) is comonotonic.
2. $S \overset{d}{=} S^-$.
3. $\text{Var}[S] = \text{Var}[S^r]$.
4. $C[K] = C^r[K]$, for all $K \geq 0$.
5. $P[K] = P^r[K]$, for all $K \geq 0$.

Proof. The proof of (1) \Rightarrow (2) \Rightarrow (3) is trivial.

In order to prove (3) \Rightarrow (1), notice that the equivalence of the variances of S and S^r can be expressed as

$$\sum_{i,j=1}^n \text{corr}[X_i, X_j] \sigma_{X_i} \sigma_{X_j} = \sum_{i,j=1}^n \text{corr}[F_{X_i}^{-1}(U), F_{X_j}^{-1}(U)] \sigma_{X_i} \sigma_{X_j} .$$

Taking into account that

$$\text{corr}[X_i, X_j] \leq \text{corr}[F_{X_i}^{-1}(U), F_{X_j}^{-1}(U)] , \quad i, j = 1, \ldots, n,$$

(see Eq. (72) in Dhaene et al. (2002b)), we conclude from the previous equality that

$$\text{corr}[X_i, X_j] = \text{corr}[F_{X_i}^{-1}(U), F_{X_j}^{-1}(U)] , \quad i, j = 1, \ldots, n.$$

This condition is equivalent to (1); see Theorem 8 in Dhaene et al. (2002b).

In order to prove the remaining part of the theorem, notice that

$$S \overset{d}{=} S^r \iff \mathbb{E} \left((S - K)^+ \right) = \mathbb{E} \left((S^r - K)^+ \right) , \quad \text{for all } K \geq 0$$

$$\iff \mathbb{E} \left((K - S)^+ \right) = \mathbb{E} \left((K - S^r)^+ \right) , \quad \text{for all } K \geq 0.$$

The equivalences (1) \iff (4) \iff (5) are immediate consequences of these well-known equivalence relations.

The bivariate special case of (1)–(3) in Theorem 1 can be found in Dhaene et al. (2002b). A proof of the equivalence between (2) and (3) can also be found in Cheung and Vanduffel (in press). Moreover, the equivalence of (1) and (2) in Theorem 1 is a special case of a more general result presented in Cheung (2010), who shows that this equivalence remains to hold without assuming the existence of the second order moments.

3.3. The variance of the comonotonic index

As mentioned above, in practice, the option curves $\{C[K] \mid K \geq 0\}$ and $\{P[K] \mid K \geq 0\}$ are in general not fully known. This observation implies that it is impossible to derive the distribution of S^r, as well as its related option curves $\{C^r[K] \mid K \geq 0\}$ and $\{P^r[K] \mid K \geq 0\}$ which were defined in (31). Therefore we introduce the quantities $C^r[K]$ and $P^r[K]$ related to the comonotonic index S^r:

$$C^r[K] = e^{-rT} \mathbb{E} \left((S^r - K)^+ \right) ,$$

$$P^r[K] = e^{-rT} \mathbb{E} \left((K - S^r)^+ \right) .$$ \hspace{1cm} (32)

Somewhat loosely speaking, we will call $C^r[K]$ and $P^r[K]$ comonotonic index call and put option prices. Notice that options with pay-offs $(S^r - K)^+$ and $(K - S^r)^-$ are not traded, but as the distribution of S^r is known, we are able to determine the values of $C^r[K]$ and $P^r[K]$. Hereafter, we explain how to determine these values.

Starting from expressions (4) for the empirical distributions \bar{F}_{X_i}, Chen et al. (2008) and Hobson et al. (2005) prove that the
cmonotonic index call option price $C^\alpha[K]$ can be expressed as follows:
\[
C^\alpha[K] = \sum_{i\in N_K} w_i C_i[K_{i,j}]
+ \sum_{i\in \overline{N}_K} w_i (\alpha_K C_i[K_{i,j}] + (1 - \alpha_K) C_i[K_{i,j+1}]) ,
\] (33)
which holds for any $K \in \left(\sum_{i=1}^n w_i F_{X_i}^{-1}(0), \sum_{i=1}^n w_i K_{i,m_{i+1}} \right)$. In this expression, each j_i, $i = 1, 2, \ldots, n$, depends on K and is defined as the unique integer in the set $\{0, 1, \ldots, m_i + 1\}$ that satisfies
\[
F_{X_i}(K_{i,j_i-1}) < F_{X_i}^{-1}(K) < F_{X_i}(K_{i,j_i}) .
\] (34)
Notice that $F_{X_i}^{-1}(K)$ can be determined using the algorithm presented in Section 3.1. Furthermore, the set N_K is defined by
\[
N_K = \{ i \in \{1, 2, \ldots, n\} | F_{X_i}(K_{i,j_i-1}) < F_{X_i}^{-1}(K) < F_{X_i}(K_{i,j_i}) \}
\] (35)
while its complement \overline{N}_K is given by
\[
\overline{N}_K = \{ i \in \{1, 2, \ldots, n\} | F_{X_i}(K_{i,j_i}) = F_{X_i}^{-1}(K) \} .
\] (36)
Finally, the coefficient α_K in (33) is given by
\[
\alpha_K = 1 - \frac{K - \sum_{i=1}^n w_i K_{i,j_i}}{\sum_{i\in \overline{N}_K} w_i (K_{i,j_i+1} - K_{i,j_i})} .
\] (37)

One can prove that \overline{N}_K is always a non-empty set, so that α_K is always well-defined.

From (33), we see that the cmonotonic index call options can be considered as synthetically created options, using an appropriately chosen linear combination of traded options on the individual components of the index, with appropriately chosen strikes.

Starting from expression (7) for the cdf's F_{X_i}, Linders and Dhaene (2012) show that the cmonotonic index put option price $P^\alpha[K]$ is given by
\[
P^\alpha[K] = \sum_{i\in N_K} w_i P_i[K_{i,j}]
+ \sum_{i\in \overline{N}_K} w_i (\alpha_K P_i[K_{i,j}] + (1 - \alpha_K) P_i[K_{i,j+1}]) ,
\] (38)
which holds for any $K \in \left(\sum_{i=1}^n w_i F_{X_i}^{-1}(0), \sum_{i=1}^n w_i K_{i,m_{i+1}} \right)$. In this expression for $P^\alpha[K]$ the indices j_i are defined by (34), the sets N_K and \overline{N}_K by (35) and (36), while the coefficient α_K is given by (37). Notice that (38) can also be determined from the put-call parity applied to cmonotonic index options and to stock options, respectively.

Similar to (9) we find the following expression for $f(\overline{S})$ for any function f defined on the non-negative real numbers with an absolutely continuous derivative f':
\[
f(\overline{S}) = f(a) + f'(a) \left(\overline{S} - a \right)_+ - \left(a - \overline{S} \right)_+ \\
+ \int_0^{\overline{S}} f''(K) (K - \overline{S})_+ dK \\
+ \int_{\overline{S}}^{\infty} f''(K) (\overline{S} - K)_+ dK.
\] (39)
Choosing the function f defined in (15), setting $a = E[S]$ and taking into account that $E[\overline{S}] = E[S]$, we find that $Var[\overline{S}]$ can be expressed as follows in terms of cmonotonic index option prices:
\[
Var[\overline{S}] = 2e^{\alpha T} \left(\int_0^{\overline{S}} P^\alpha[K] dK + \int_{\overline{S}}^{\infty} C^\alpha[K] dK \right) .
\] (40)

Inspired by approximation (21) for the variance of the index price S, which is a linear combination of observed index option prices, we propose to approximate the variance of the cmonotonic index price \overline{S} by the following linear combination of cmonotonic index option prices:
\[
Var[\overline{S}] \approx \left(\overline{S} \right)^2 (\text{Time}) = 2e^{\alpha T} \sum_{i=1}^h \Delta K_i \overline{Q}^\alpha[K_i] - (E[S] - K_0)^2 .
\] (41)

where the K_i are the traded index strikes, the ΔK_i are defined as before and the $\overline{Q}^\alpha[K_i]$ are given by
\[
\overline{Q}^\alpha[K_i] = \begin{cases}
\overline{P}^\alpha[K_i] & \text{if } K_i < K_0, \\
\overline{C}^\alpha[K_i] + \overline{P}^\alpha[K_i] & \text{if } K_i = K_0, \\
\overline{C}^\alpha[K_i] & \text{if } K_i > K_0.
\end{cases}
\] (42)

Taking into account expressions (33) and (38), we can conclude that the cmonotonic index option prices $C^\alpha[K]$ and $P^\alpha[K]$ and hence also approximation (41) for $Var[\overline{S}]$, can be determined in a rather straightforward way from observed stock option price data.

4. Measuring the degree of herd behavior in stock markets

4.1. The implied herd behavior index

For any of the traded strikes K, the index call option prices $C[K]$ can be observed in the market. From (33), it follows that for each of these strikes, we can also determine the corresponding cmonotonic index call option prices $C^\alpha[K]$ from the prices of the traded European stock options. In Chen et al. (2008), it is proven that the following inequalities hold:
\[
C[K] \leq C^\alpha[K] \leq C^\overline{\alpha}[K] .
\] (43)

Moreover, they prove that, given the observed call option prices of the different stocks in the market, $C^\alpha[K]$ is the price of the cheapest super-replicating strategy for the index option $C[K]$ in a broad class of admissible investment strategies. Similar results hold for the put option case, which is considered in Linders and Dhaene (2012). In particular, they prove that
\[
P[K] \leq P^\alpha[K] \leq P^\overline{\alpha}[K] .
\] (44)

In practice, stock prices will typically not behave cmonotonic so that the upper bounds $C^\alpha[K]$ and $P^\alpha[K]$ in (43) and (44) will not be reached. Laurence (2008) introduced the term 'cmonotonicity gap' to indicate the difference between the cmonotonic index option price $C^\alpha[K]$, resp. $P^\alpha[K]$, and the observed market price $C[K]$, resp. $P[K]$, for an appropriate choice of the traded strike K. Obviously, the cmonotonicity gap will vary over time.

In order to be able to investigate the 'variation in degree of herd behavior', hereafter we will introduce the 'Herd Behavior Index', which gives an indication of the degree of future co-movement of stock prices as implied by today's option prices. A consistent daily (or more frequent) recording of this index will reveal information about the market perception on the degree of future herd behavior and more important, about the evolution of this perception over time.

Taking into account Theorem 1, one could define the Herd Behavior Index as the proportion $\frac{Var[S]}{Var[\overline{S}]}$. This index uses $Var[S]$ to represent the real market situation and compares it with $Var[\overline{S}]$, which corresponds with the extreme case of cmonotonicity or
perfect herd behavior. This proportion takes values in the interval \([0, 1]\). It equals 1 if, and only if, the market is comonotonic. In general, neither \(\text{Var}[S]\) nor \(\text{Var}[S']\) are observable. Therefore, we propose to replace \(\text{Var}[S]\) by its approximation (21), which is a linear combination of observed index option prices. It seems then natural to replace \(\text{Var}[S']\) by approximation (41) for \(\text{Var}[S']\), which is the corresponding linear combination of the comonotonic index option prices. These considerations lead to the following definition of the Herd Behavior Index.

Definition 1. Consider the random vector \(X\) representing the stock prices \(X_i\), \(i = 1, 2, \ldots, n\) at time \(T\). The \(T\)-year implied Herd Behavior Index, notation \(\text{HIX}[T]\), is defined as

\[
\text{HIX}[T] = \frac{\text{Var}[S]}{\text{Var}[S']}\frac{\sum_{i=1}^{n} \text{Corr}[X_i, X_j] - (\text{E}[S] - K_0)^2}{\sum_{i=1}^{n} \text{Var}[S]}.
\]

\(\text{HIX}[T]\) is a \(T\)-year forward looking measure for the degree of herd behavior, which is calculated by comparing a weighted sum of traded index option prices by the corresponding weighted sum of comonotonic index option prices. In order to calculate \(\text{HIX}[T]\), we need the values of \(\text{Var}[S]\) and \(\text{Var}[S']\), \(i = -l, \ldots, h\) as input. The \(\text{Var}[S]\) follow immediately from the observed index option prices; see (22). The \(\text{Var}[S']\) follow from the observed stock option prices; see (33), (38) and (42). As no distributional assumptions have to be made, \(\text{HIX}[T]\) is a model-free measure for the degree of herd behavior in the market. In general, it may happen that there are no options available that expire exactly at time \(T\). In this case, \(\text{HIX}[T]\) is calculated by means of an appropriate linear interpolation or extrapolation; see Section 5.

The Herd Behavior Index can be considered as a generalization of the comonotonicity ratio \(C[K]/\overline{C}[K]\), which is considered in Laurence (2008). Whereas the comonotonicity ratio compares a single traded index option with its comonotonic counterpart, in the calculation of the \(\text{HIX}\) all traded strikes are involved, leading to a more robust measure for the degree of herd behavior.

4.2. Herd behavior and correlation

Market practitioners are well aware of the risk related to a market with strong positive dependence between the stock prices \(X_1, X_2, \ldots, X_n\). The most straightforward way to capture this risk is via the pairwise correlations between the stock prices. In this section, we will show that this approach may fail to capture the degree of herd behavior and could even give misleading signals, especially in highly volatile markets.

The variance of the market index price \(S\) can be written as

\[
\sigma_S^2 = \sum_{i=1}^{n} \sigma^2_i + \sum_{i,j} w_i w_j \sigma_i \sigma_j \text{Corr}[X_i, X_j].
\]

It is very tempting to try to express herd behavior in terms of the \(n(n-1)\) correlations between the different stock prices. Such an approach however only reflects the market’s perception of the future correlations, not the future degree of herd behavior. High correlations are indeed a sign for a high degree of herd behavior in the market, but low correlations do not necessarily imply a low degree of dependence. Hence, correlations could give misleading signals. An explanation of this flaw is that one often considers the maximal variance of the random index price \(S\) to arise when all correlations \(\text{Corr}[X_i, X_j]\) are equal to 1, which is however not true in general. Given the distributions \(F_{X_i}\) of the marginals, the maximal attainable values for the correlations \(\text{Corr}[X_i, X_j]\) are given by \(\text{Corr}\left[F_{X_i}^{-1}(U), F_{X_j}^{-1}(U)\right]\), and the maximal variance of the comonotonic index price is equal to \(\sigma_S^2\), which is given by

\[
\sigma_S^2 = \sum_{i=1}^{n} \sigma_i^2 + \sum_{i,j} w_i w_j \sigma_i \sigma_j \text{Corr}\left[F_{X_i}^{-1}(U), F_{X_j}^{-1}(U)\right].
\]

Although correlations fully determine the dependence structure for multivariate elliptical distributions, they fail to do so outside this class of distributions. The non-equivalence of comonotonicity and correlation 1 for a random couple can easily be illustrated by the couple \((X, X^2)\) where \(X\) is a standard normal random variable. This couple is comonotonic, while \(\text{Corr}[X, X^2] = 0\). Embrechts et al. (1999) illustrate this failure by considering two lognormal random variables. In this case, the set of attainable correlations is a strict subset of \([-1, +1]\), which becomes smaller when one of the volatilities increases, while the other remains constant. Inspired by this example, hereafter we demonstrate that, given a very strong positive dependence structure between two future stock prices, their correlation can nevertheless be very low, which could be wrongly interpreted as a signal for a low degree of herd behavior. The \(\text{HIX}\), however, is capable of detecting this strong dependence and correctly reflects the high degree of herd behavior.

Consider two stocks with price processes \(X_i(t)\), \(0 \leq t \leq T\), \(i = 1, 2\). Suppose that their risk neutral dynamics are described by the following stochastic differential equations:

\[
\begin{align*}
\frac{dX_1(t)}{X_1(t)} &= \sigma_1 dB_1(t) \\
\frac{dX_2(t)}{X_2(t)} &= \sigma_2 dB_2(t)
\end{align*}
\]

where \(\{B_1(t), B_2(t)\} \mid t \geq 0\) is a 2-dimensional correlated Brownian motion. The stochastic processes \(\{B_1(t), B_2(t)\} \mid t \geq 0\) are standard Brownian motions, while the dependency structure (under both the stochastic measure and the risk-neutral measure) of \(\{B_1(t), B_2(t)\} \mid t \geq 0\) is captured by the instantaneous correlation \(\rho\). The r.v.'s \(X_1 = X_1(T)\) and \(X_2 = X_2(T)\) are both lognormal distributed with expected values and variances given by

\[
\mathbb{E}[X_i] = e^{\mu_i T} \quad \text{and} \quad \sigma_i^2 = \mathbb{E}[(X_i - \mathbb{E}[X_i])^2] = e^{2\mu_i T} - 1.
\]

The correlation between \(X_1\) and \(X_2\) is equal to

\[
\text{Corr}[X_1, X_2] = \frac{\mathbb{E}[X_1 X_2] - \mathbb{E}[X_1] \mathbb{E}[X_2]}{\sqrt{\text{Var}[X_1] \text{Var}[X_2]}} = \frac{e^{\mu_1 + \mu_2} - 1}{\sqrt{e^{2\mu_1 T} - 1} \sqrt{e^{2\mu_2 T} - 1}}.
\]

As the distribution of \((X_1, X_2)\) is completely specified, the \(\text{HIX}\) can be determined by

\[
\text{HIX}[T] = \frac{\text{Var}[S]}{\text{Var}[S']}rac{\text{Corr}[X_1, X_2] \sigma_1 \sigma_2}{\sigma_1^2 + \sigma_2^2 + 2 \text{Corr}[X_1, X_2] \sigma_1 \sigma_2}.
\]

where \(\text{Corr}\left[F_{X_1}^{-1}(U), F_{X_2}^{-1}(U)\right]\) is the maximal correlation between \(X_1\) and \(X_2\):

\[
\text{Corr}\left[F_{X_1}^{-1}(U), F_{X_2}^{-1}(U)\right] = \frac{e^{\mu_1 + \mu_2} - 1}{\sqrt{e^{2\mu_1 T} - 1} \sqrt{e^{2\mu_2 T} - 1}}.
\]
becomes clearer when the non-linear relationship between the random variables and in the right way. This dysfunctioning of correlation is caused by between a random variable and a constant is 0, while at the same

Taking into account that for a bivariate normal random pair, \(\text{corr} \left[X_1(t), X_2(t) \right] \) tends to 1 whereas \(\text{corr} \left[X_1(1), X_2(1) \right] \) goes to 0. Intuitively, we may explain this limiting behavior as follows: in case \(X_2 \) has a much larger variance than \(X_1 \), we have that \(X_1 \) almost behaves as a constant value, compared to \(X_2 \). But the correlation between a random variable and a constant is 0, while at the same time, they are comonotonic.

We can conclude that in markets with some highly volatile stocks, correlation may fail to capture the underlying dependence in the right way. This dysfunctioning of correlation is caused by the non-linear relationship between the random variables and becomes clearer when \(\sigma_2 \) becomes relatively large. It is exactly in very distressed markets with very high volatilities for some stocks that we might need an accurate estimate of the degree of implied herd behavior. At such a crucial moment, correlations may give a completely wrong indication, whereas the HIX is capable of providing us with the correct information.

4.3. Measuring implied herd behavior via the VIX methodology

The key quantities in the definition of the HIX are the approximations for the variances of the index price and the comonotonic index price. In this subsection, we explain how the approach for calculating the HIX from observed options prices can also be used for determining a herd behavior index based on the VIX methodology. For completeness, we first shortly describe this VIX methodology and the related variance swap contracts. For a more detailed discussion on the VIX methodology, the reader is referred to Carr and Wu (2006) and Chicago Board Options Exchange (2009).

In 1993, the Chicago Board Options Exchange (CBOE) introduced the CBOE Volatility Index (ticker symbol VIX), which since then has become the industry benchmark for market volatility. In 2003, CBOE launched a renewed version of the VIX Index. This new VIX is calculated based on S&P 500 index options. VIX can be interpreted as a quote on the expected market volatility over the next 30 calendar days. To be more precise, VIX squared is an approximation of the 30-day variance swap rate on the S&P 500 Index.

Consider a variance swap contract on the S&P 500, that is initiated today at time 0 and expires at time \(T \), that is in \(365 \times T \) days. At maturity, one leg of the swap pays the buyer the (annualized) realized variance \(\text{RV}[T] \) of the logprice changes of the index:

\[
\text{RV}[T] = \frac{1}{T} \sum_{j=1}^{365} T \ln S \left(\frac{j}{365} \right) - \ln S \left(\frac{j-1}{365} \right) ^2 \, .
\]

The other leg pays the seller the fixed amount \(\text{SR}[T] \) at time \(T \), which is the swap rate that is agreed upon at the deal’s inception (time 0), and which is determined such that the risk-neutral price of the pay-off \(\text{RV}[T] - \text{SR}[T] \) at time \(T \) is zero at inception, hence

\[
\text{SR}[T] = \mathbb{E} \left[\text{RV}[T] \right] .
\]

The buyer of the variance swap is long volatility. A variance swap contract allows one to speculate on the future realized variance or hedge against risks associated with the magnitude of movement of the index; see e.g. Schoutens (2005).

Under a fairly general setting for the \(\mathbb{Q} \)-dynamics of the assets involved, and also assuming a continuously (instead of daily) sampled variance over the lifetime of the contract, Carr and Wu (2006) prove that the realized variance is given by

\[
\text{RV}[T] = \frac{2}{T} \left(\frac{S}{\mathbb{E}[S]} - 1 - \ln \left(\frac{S}{\mathbb{E}[S]} \right) \right) + A[T] + B[T] ,
\]

where \(A[T] \) is the pay-off at time \(T \) of a dynamic trading strategy in futures for which \(\mathbb{E}[A[T]] = 0 \), while \(B[T] \) is a higher order term induced by the jumps in the index price dynamics. Applying (9) with \(f(S) = \ln \left(\frac{S}{\mathbb{E}[S]} \right) \) and \(a = \mathbb{E}[S] \), and substituting this expression for \(f(S) \) in (50) leads to

\[
\text{RV}[T] = \frac{2}{T} \left(\int_{0}^{\mathbb{E}[S]} (K - S) \frac{dK}{K^2} + \int_{\mathbb{E}[S]}^{\infty} (S - K)^+ \frac{dK}{K^2} \right) + A[T] + B[T] .
\]

This expression shows that, up to the future components \(A[T] \) and the higher order jump component \(B[T] \), the realized variance can be replicated by the pay-off of a static position in a continuum of European options on the index. Taking expectations with respect to \(\mathbb{Q} \), we obtain

\[
\text{SR}[T] = \frac{2}{T} e^{rT} \left(\int_{0}^{\mathbb{E}[S]} \frac{P[K]}{K^2} dK + \int_{\mathbb{E}[S]}^{\infty} C[K] \frac{dK}{K^2} \right) + \mathbb{E} \left[B[T] \right] ,
\]

which shows that the swap rate is equal to the sum of a weighted average of index option prices across all strikes and a higher order term. Ignoring the higher order term and further approximating the remaining integrals in a similar way as the one that led to approximation (21) for \(\text{Var}[S] \); we find the following approximate expression for the variance swap rate \(\text{SR}[T] \) in terms of observed option prices:

\[
\text{SR}[T] \approx \sigma^2[T] \equiv \frac{2}{T} e^{rT} \sum_{i=1}^{K} K_i \mathbb{E}[S] - 1 \left(\frac{\mathbb{E}[S]}{K_i} - 1 \right)^2 ,
\]

where \(\Delta K_i \) and \(Q \) are defined as before.

The approximation \(\sigma^2[T] \) for \(\text{SR}[T] \) is crucial in the VIX calculation. Choosing a 30 day time period, hence \(T = 30/365 \), interpreting all notations above in terms of the S&P 500 index and assuming that there are options available that expire in exactly 30 days, the VIX is defined as

\[
\text{VIX} = 100 \times \sigma \left(\frac{30}{365} \right) .
\]
Notice however that most of the time there are no options available that expire exactly in 30 calendar days. The \(T = 30 \) calendar days \(\text{VIX} \) is then calculated by using the appropriate linear inter- or extrapolation on adjacent maturities; see Section 5. The \(\text{VIX} \) index is considered by the market as an indicator for market stress. Based on the \(\text{VIX} \) methodology, \(\text{CBOE} \) also calculates volatility indices for other markets, including the \(\text{CBOE DJ Volatility Index (ticker VIX)} \).

We define the comonotonic swap rate and the comonotonic version of the approximation \(\sigma^2 [T] \) by replacing the index option prices \(P[K] \) and \(C[K] \) in (52) by the corresponding comonotonic index option prices \(\overline{P}[K] \) and \(\overline{C}[K] \). This leads to the expressions

\[
\overline{S}R \approx T = \frac{2}{T} \exp \left(\int_0^{E[S]} \frac{\overline{P}[K]}{K^2} dK + \int_{E[S]}^{+\infty} \frac{\overline{P}[K]}{K^2} dK \right) + E \left[\overline{B} [T] \right] \tag{55}
\]

and

\[
\overline{S}R \approx (\sigma^2)^2 [T] = \frac{2}{T} \exp \left(\sum_{i=1}^{h} \Delta K_i \frac{Q[K_i]}{K_i^2} \right) - \frac{1}{T} \left(E[S] \frac{1}{K_0} - 1 \right)^2, \tag{56}
\]

respectively. In case there are options available that expire in exactly 30 days, we define the comonotonic \(\text{VIX} \) by

\[
\text{VIX}^c = 100 \times \sigma^2 \left[\frac{30}{365} \right]. \tag{57}
\]

In the general case where there are no such options available, the comonotonic \(\text{VIX} \) is defined by the appropriate linear inter- or extrapolation; see Section 5.

Inspired by the methodology described in Section 4.1, Dhaene et al. (2011) introduce the \(T \)-year implied Comonotonic Index (\(\text{CIX} \)). We slightly adapt their definition and define the \(\text{CIX} \) as the ratio of the (approximated) swap rate to the (approximated) comonotonic swap rate:

\[
\text{CIX}[T] = \frac{\sigma^2 [T]}{(\sigma^2)^2 [T]} = \frac{2}{T} \sum_{i=1}^{h} \Delta K_i \frac{Q[K_i]}{K_i^2} \left(\frac{Q[S]}{K_0} - 1 \right)^2, \tag{58}
\]

provided options that expire at time \(T \) are traded in the market. The \(\text{CIX} \) is an alternative measure for herd behavior in stock markets. When \(T = 30/365 \), it can be interpreted as the ratio of \(\text{VIX} \) squared (which is based on observed index option prices \(Q[K_i] \)) to the comonotonic \(\text{VIX} \) squared (which is based on comonotonic index option prices \(\overline{Q}[K_i] \)).

5. Practical considerations

In this section, we consider several numerical issues related to the calculation of the value of the \(T \)-year \(\text{HIX} \) for a particular stock market. Let us first assume that stock options as well as index options with maturity \(T \) years (e.g. \(T = \frac{30}{365} \)) are traded.

In practice, we will not observe the theoretical index call option price \(C[K] \) for each traded strike \(K \). Instead, we will observe a bid price \(\text{Cbid}[K] \) and a larger ask price \(\text{Cask}[K] \). In order to cope with this bid/ask spread, we propose to use midquote prices as an approximation for the theoretical option prices:

\[
C[K] \approx \frac{\text{Cbid}[K] + \text{Cask}[K]}{2}. \tag{59}
\]

Similar conventions are made for put options on the index as well as for call and put options on the individual stocks. Hereafter, we will always refer to midquote prices when considering option prices.

The \(\text{HIX} \) formula (45) contains the forward index price \(E[S] \). In line with the \(\text{VIX} \) methodology, we propose to calculate \(E[S] \) based on the put-call parity (14) for the pair of index put and call options with prices that are closest to each other. Hence,

\[
E[S] = e^{rT} \left(C[K^*] - P[K^*] \right) + K^*, \tag{60}
\]

where

\[
K^* = \arg \min_{K \in [K_i, \ldots, K_j]} |C[K] - P[K]|, \tag{61}
\]

We have assumed that for each stock \(i \), the maximal value \(K_{i,m+1} \) of \(\text{X}_i \) is finite. We propose to choose these \(K_{i,m+1} \) sufficiently large such that they fulfill the optimality conditions as explained in Chen et al. (2008).

The observed prices \(C_i[K_{i,j}] \) or \(P_i[K_{i,j}] \) of the options written on the individual stocks are used to construct the empirical distribution function \(F_{X_i} \), by first introducing the piecewise linear functions \(\overline{C}_i[K] \) or \(\overline{P}_i[K] \) and then applying (5) or (8). This leads to expressions (4) or (7) for \(F_{X_i} \). In this procedure, it is implicitly assumed that the option prices \(C_i[0] \), \(P_i[0] \), \(C_i[K_{i,m+1}] \) and \(P_i[K_{i,m+1}] \) are given. Obviously, we have that

\[
C_i[K_{i,m+1}] = P_i[0] = 0. \tag{62}
\]

Furthermore, the theoretical option prices \(C_i[0] \) and \(P_i[K_{i,m+1}] \) are given by

\[
C_i[0] = e^{-rT} E[X_i] \tag{63}
\]

and

\[
P_i[K_{i,m+1}] = e^{-rT} (K_{i,m+1} - E[X_i]). \tag{64}
\]

Inspired by the above-mentioned approach to determine \(E[S] \), we propose to calculate \(E[X_i] \) as follows:

\[
E[X_i] = e^{rT} \left(C_i[K^*] - P_i[K^*] \right) + K^* \tag{65}
\]

with

\[
K^* = \arg \min_{K \in [K_{i,1}, \ldots, K_{i,m}]} |C_i[K] - P_i[K]| \tag{66}
\]

Plugging these values of the \(E[X_i] \) in (63) and (64) leads to the quotes for the call options with strike \(0 \) and put options with strike \(K_{i,m+1} \).

The empirical distributions \(\overline{F}_{X_i} \) may be determined from the call option prices via (4) or from the put option prices via (7). Although in theory both expressions for \(\overline{F}_{X_i} \) are equal, in practice they may differ. For keeping consistency in our calculations hereafter, we will always use the call option data \(\{(K_{i,j}, C_i[K_{i,j}]) \mid j = 0, 1, \ldots, m+1\} \) to determine the empirical distribution functions \(\overline{F}_{X_i} \). Furthermore, in order to make the \(\text{HIX} \) sufficiently stable, we only use stock options which have a bid price which is strictly larger than zero and a volume which is strictly larger than 20 for determining the risk-neutral distributions \(\overline{F}_{X_i} \).

It may happen that for one or more of the underlying stocks \(i \), there are no traded strikes \(K_{i,1}, \ldots, K_{i,m} \). This situation may occur if the market is illiquid or because there are no options issued on that particular stock. In this case, the \(\text{HIX} \) can still be determined according to the methodology presented above. For more details, we refer to Linders and Dhaene (2012).

In practice, it may happen that the set of traded strikes are partially different for the call and put stock options. In this case, one might restrict to the set of strikes for which both calls and puts
are traded, or one might also artificially create the missing options with the help of the put-call parity (6). In the calculations hereafter, we will take the first approach and only consider strikes for which both the call and the put prices are available.

Due to price irregularities, it may happen that the piecewise linear function $\bar{F}_X[K_i]$ (or $\bar{P}_X[K]$) is not convex, leading to a function \bar{F}_X that is not increasing and hence, not a proper cumulative distribution function. In order to circumvent this problem, we propose to work with the function \bar{F}_X instead of \bar{F}_X, which is defined as follows:

$$\bar{F}_X(K_{i,j}) = \min \left\{ F_{X_j}(K_{i,j}), \bar{F}_X(K_{i,j+1}) \right\}, \quad j = 0, 1, \ldots, m_i,$$ \hspace{1cm} (67)

with initial value

$$\bar{F}_X(K_{i,m_i+1}) = 1.$$ \hspace{1cm} (68)

Until here, we assumed that all options on the index as well as on the individual stocks are of the European type. In the next section, we will apply our methodology to the Dow Jones Industrial Average (DJ) index. In this case, the index options are of European type, whereas the individual stock options are of American type, where the holder has the right to exercise the option at any time up to and including the maturity date. In general, the price of an American option is an upper bound for the corresponding European option. Therefore, we will continue to use the methodology described above, but we replace the (non-observed) European option prices $C_i[K_{i,j}]$ and $P_i[K_{i,j}]$ that appear in the expressions (33) and (38) for $C_i[K]$ and $P_i[K]$ by the corresponding (observed) American option prices. As the option prices $C_i[K_{i,j}]$ and $P_i[K_{i,j}]$ only appear in the denominator of the HIX and the CIX, this approximation will lead to somewhat smaller values for the respective indices.

Suppose now that we want to calculate the T-year HIX on a regular basis. As an example, hereafter we set T equal to 30 calendar days, hence $T = \frac{365}{12}$, and we consider a market where for each month only a single expiration date is available (e.g. the closing of the third Friday of the month). When calculating the HIX on a particular moment, in general no options will be available that expire in exactly 30 calendar days. Let us denote the first available maturity date by T_1 and the next one by T_2. Options which mature at time T_1 are called near-term options, the ones which mature at time T_2 are called next-term options. Inspired by the methodology used for calculating the VIX, the Herd Behavior Index with maturity T is now calculated as a weighted average of the near-term and the next-term Herd Behavior Index:

$$HIX[T] = HIX[T_1] \times \left[\frac{T_2 - T}{T_2 - T_1} \right] + HIX[T_2] \times \left[\frac{T - T_1}{T_2 - T_1} \right].$$ \hspace{1cm} (69)

We have that $T_1 \leq T \leq T_2$ and formula (69) for $HIX[T]$ is an interpolation of $HIX[T_1]$ and $HIX[T_2]$. Notice that the risk-free interest rate used for calculating $HIX[T]$ is set equal to the risk free interest rate to expiration T_i, $i = 1, 2$. This implies that different risk-free interest rates may be used for near- and next-term options. In order to avoid possible price irregularities near to expiration, we ‘roll’ the HIX to the second and the third contract months in case the near-term options have less than a week to expiration. After such a roll, we encounter a situation where $T < T_1 < T_2$, with T_1 and T_2 now standing for the second and third expiration dates, respectively. In this case, formula (69) for $HIX[T]$ is an extrapolation of $HIX[T_1]$ and $HIX[T_2]$.

It may happen that the near- and the next-term maturities T_1 and T_2 of options on stock i differ from the near- and the next-term maturities T_1 and T_2 of the stock index. In the numerical illustration in the next section, this situation happens rarely and the differences $|T_k - T_{i,k}|$, $k = 1, 2$, are small, i.e. typically only a few days. Therefore, when this situation occurs, we will approximate the (non-observed) required option prices $C_i[K_{i,j}, T_k]$ by the observed quotes $C_i[K_{i,j}, T_{i,k}]$.

In the next section, we will also calculate historical values of the CIX, which was defined in (58), according to the same methodology as the one presented above for the HIX. In particular, we will calculate the CIX with maturity T as a weighted average of the near-term and the next-term indices:

$$CIX[T] = CIX[T_1] \times \left[\frac{T_2 - T}{T_2 - T_1} \right] + CIX[T_2] \times \left[\frac{T - T_1}{T_2 - T_1} \right].$$ \hspace{1cm} (70)

Notice that this way of determining the CIX is somewhat different from the one proposed in Dhaene et al. (2011), where the linear interpolation is not performed at the level of the CIX, but at the level of the numerator and the denominator in (58) separately. Based on the VIX inter- or extrapolation formula (71) given in Box I, these authors introduce the comonotonic upper bound for the VIX given in Box II, and propose to measure the herd behavior index by the ratio \(\frac{\text{VIX}}{\text{CIX}} \). This ratio has a somewhat more attractive look compared to the CIX defined above, but the way how it is constructed out of near and next term options by a linear interpolation is not performed in the nominator and the denominator separately is less appropriate than the linear inter- or extrapolation used in (70).

6. Numerical illustration: the HIX for the Dow Jones

The Dow Jones. The Dow Jones Industrial Average, established 1896, is a price-weighted index composed of the 30 largest, most liquid NYSE and NASDAQ listed stocks. Options with the DJ index as underlying are called DJX options. These (European-type) options were introduced in 1997. DJX options are based on 1/100th of the current value of the DJ. Therefore, hereafter $s(t)$ has to be interpreted as 1/100th of the value of the DJ at time t. There are also (American-type) options traded on each individual component of the Dow Jones. Roughly speaking, for each stock there are around 10 traded strikes.

Herd behavior over time. In this section, we investigate the degree of herd behavior of the 30 stocks in the DJ by introducing the DJ-HIX. In particular, we set T equal to 30 calendar days. We calculate the historical DJ-HIX values on a daily basis for the period January 2006–October 2009. For each trading day, we use the closing bid and ask prices of the options involved.

The first graph of Fig. 2 shows the historical DJ index price levels from January 2006 until October 2009. Taking into account (45) and (69), we determine the degree of herd behavior for any day in the observation period by calculating the daily DJ-HIX for $T = 30$ days. These values are presented in the second graph of Fig. 2. A smoothed version of these DJ-HIX values, based on the average quote over the last 7 trading days, is shown in the third graph.

From Fig. 2, we conclude that the DJ-HIX fluctuates substantially over time. Loosely speaking, between January 2006 and January 2007 the degree of herd behavior is relatively low, during January 2007–October 2008 it is at an intermediate level, while in the remaining part of the observation period (October 2008–October 2009), it is at a relatively high level. The DJ-HIX frequently spikes upward. From early 2007 until mid 2008 a few relatively high peaks are observed, which could be interpreted as signs of stress before the worldwide financial crisis towards the end of 2008. Around the middle of 2008, the market seems to calm down, but in October 2008 the DJ-HIX increases drastically and reaches its highest level of around 0.75 on October, 24. In 2009, the DJ-HIX relaxes, but only at a very slow rate and hence, remains relatively high during the whole year.

Herd behavior as a component of stock market fear. An increased DJ-HIX is a sign that option traders in the market believe in a stronger
co-movement of the different stock prices over the next 30 days. The degree of implied herd behavior may reach a high level due to panic and a strong belief that stock prices will go down all together, inducing that also the market index will decrease rapidly. In principle, the HIX may also reach high levels due to positive financial information and a believe that in the near future all stock prices will move up together. From the observed data we find that the HIX shows a tendency to increase when the market index decreases. In this respect, the HIX may be viewed as a fear or stress indicator.

In Fig. 3, we compare the (smoothed) DJ-HIX and the DJ Volatility Index (VXD). The latter index is a volatility barometer for the DJ, calculated according to the VIX methodology. Both the HIX and the VIX may explain part of the real market stress or market fear; see Dhaene et al. (2011). The HIX measures the expected co-movement of the components of the index, whereas the VIX-based Volatility Index measures the expected volatility of the index. Notice that an increased index volatility may be caused by increased volatilities of the components and/or by an increased degree of herd behavior.

In Fig. 3, we observe a tendency of the HIX to increase when the market volatility increases. The peaks in the graphs of the DJ-HIX and the DJ Volatility Index are reflecting periods of increased market stress. Notice that the DJ-HIX is a relative and bounded measure with maximal value equal to 1 in case of perfect co-movement, whereas the DJ Volatility Index is an absolute measure without upper bound. This latter observation explains why it may be more difficult to detect peaks in the DJ Volatility Index, especially in periods where this implied volatility is at a relatively low level.

The HIX versus the CIX. The HIX quantifies the degree of herd behavior in stock markets by comparing the real market situation with a synthetic one where there is perfect herd behavior. The HIX uses estimate (21) of the variance of the index price S and estimate (41) of the variance of the comonotonic index price S^c to represent these two situations. In Section 4.3, we presented the CIX as an alternative for the HIX. Loosely speaking, the CIX considers the VIX-squared to describe the real market situation, and compares it with the comonotonic VIX-squared. Both the (smoothed) DJ-HIX and the (smoothed) DJ-CIX for $T = 30$ days are shown in Fig. 4. We observe that both measures lead to an almost identical picture. An explanation for this observation follows from a Taylor expansion of the realized variance around $E[S]$. Indeed, from (50) we find that

$$RV[T] = \frac{1}{T} \left(S - E[S] \right)^2 + \ldots$$

(73)

The variance swap rate is then given by

$$SR[T] = \frac{1}{T} \frac{\text{Var}[S]}{E[S]} + \ldots$$

(74)

The HIX is based on the ratio of $\text{Var}[S]$ to $E[S]$, whereas the CIX is based on the ratio of the swap rate $SR[T]$ to the comonotonic version of the swap rate. Taking into account (74), we find that $HIX[T]$ and $CIX[T]$ are equal, provided the higher order terms can be ignored.

7. Concluding remarks

After having experienced the late-2000s financial crisis and the related near-melt-down of the financial system, systemic risk
has attracted the attention of stakeholders including regulators, policy makers, market supervisors and speculators. A high level of systemic risk reflects the ‘low probability, high impact event’ of a market which is to a large extent driven by a single factor. Taking into account that ‘the boat loses stability and may even capsize if all its passengers together run from one side to the other over and over again’, a single factor situation may lead to a collapse of the entire system. Therefore, the estimation of the level of systemic risk is of utmost importance. It gives market players an insight and an opportunity to take the necessary precautionary actions.

In this paper, we made a modest contribution to this complicated matter by proposing a measure for the degree of co-movement or herd behavior present in equity markets. This measure compares the currently observed market situation with the comonotonic situation under which the whole system is driven by a single factor. More precisely, it compares an estimate of the variance of the market index with an estimate of the corresponding worst-case or comonotonic variance. In line with the VIX methodology, the estimate for the variance of the market index is based on the full spectrum of current option information on the index. Although the worst-case market situation is not observed, the comonotonic variance can easily be determined from the option prices on the constituents of the market index.

The ratio of (an approximation of) the market-based variance and its comonotonic counterpart was baptized the Herd Behavior Index (HIX). This index is a model-independent, market implied and forward looking indicator for co-movement behavior. The HIX attains values between 0 and 1. Today’s value of the HIX expresses the market’s perception of future herd behavior as implied by today’s option prices. A higher level points to a higher degree of herd behavior, a lower value indicates lower degrees of co-movement. The HIX is easy to calculate and can be determined for any market index or basket with underlying traded vanilla options on the index as well as on its constituents. We also introduced the CIX, which was defined as the ratio of (an approximation of) the variance swap rate and its comonotonic counterpart, and which is by definition more closely linked to the VIX-methodology.

We illustrated the HIX and the CIX by determining their historical values for the Dow Jones Industrial Average. We explained why corresponding values of both indices are almost identical in practice. Furthermore, we observed that, similar to volatility indices and correlation indices, the herd behavior indices exhibit a tendency to increase when the stock prices are decreasing.

Measuring the degree of co-movement with the HIX/CIX has several advantages compared to implied correlation. The HIX/CIX is able to capture all kinds of dependences between stock prices, whereas the implied correlation is a weighted average of pairwise correlations amongst the asset returns and hence, only focuses on linear dependences. Furthermore, making abstraction of the approximations involved in its calculation, the HIX reaches its maximal value of 1 if and only if the underlying random variables are comonotonic. On the other hand, there is no direct link between the degree of herd behavior and the value of the implied correlation. Finally, the HIX and the CIX are model-independent, respectively ‘almost’ model-independent’ estimates for future co-movement, whereas the implied correlation is not, due to the involved Black & Scholes implied volatilities.

The HIX/CIX is a measure that could be used as a tool for quantifying future expected degrees of herd behavior. In line with the ideas proposed in Laurence and Wang (2008) or Laurence (2008) for a single index option and its comonotonic counterpart, market participants could monetize the gap between the numerator and denominator of the HIX/CIX by taking the appropriate position in options on the index and its constituent stocks.

The study of applications of the HIX/CIX to financial economics problems is an interesting topic of future research. Possible research topics include investigating the relationship between the
HIX/CIX and the VIX-based Volatility Index, the relationship between the HIX/CIX and implied correlation. Also the performance of the HIX/CIX as a forecast for the future realized degree of herd behavior between assets in the underlying index has to be investigated. A somewhat linked paper in this respect is Harmon et al. (2011). A related question is whether options on the HIX/CIX would allow to hedge against exposure to herd behavior. Other empirical issues to be investigated include mean-reverting behavior of the HIX/CIX, clustering behavior (are large values likely to be followed by large values?) and asymmetry behavior (have negative returns a larger impact than positive returns of the same size?), amongst others.

Acknowledgments

Appendix

A.1. Proof of formula (21)

Approximation (21) follows by rewriting (17) as

\[e^{-rT} \text{Var}[S] = \int_{-\infty}^{K_0} P[K] dK + \int_{K_0}^{+\infty} C[K] dK + \int_{K_0}^{+\infty} (P[K] - C[K]) dK, \]

see Fig. 5. We split the first integral in two parts,

\[\int_{-\infty}^{K_0} P[K] dK = \int_{-\infty}^{K_{i-1}} P[K] dK + \int_{K_{i-1}}^{K_0} P[K] dK, \] \hspace{1cm} (75)

and approximate the second term in the right hand side of (75) by the composite trapezoidal rule:

\[\int_{K_{i-1}}^{K_0} P[K] dK \approx \sum_{i=1}^{n} (K_i - K_{i-1}) \left(\frac{P[K_{i-1}] + P[K_i]}{2} \right) \]

Assuming that \(P[K] \) reaches 0 in \(K_{i-1} = (K_{i-1} - K_{i-1}) \) we can approximate the first term in the right hand side of (75) by

\[\int_{-\infty}^{K_{i-1}} P[K] dK \approx \frac{K_{i-1} - K_{i-1}}{2} P[K_{i-1}] \]

and thus

\[\int_{-\infty}^{K_0} P[K] dK \approx (K_{i-1} - K_{i-1}) P[K_{i-1}] + \frac{1}{2} \sum_{i=1}^{n-1} (K_i - K_{i-1}) P[K_i] + \frac{1}{2} (K_0 - K_{i-1}) P[K_0] \]

Analogously we find

\[\int_{K_0}^{+\infty} C[K] dK \approx \frac{K_j - K_0}{2} C[K_0] + \frac{1}{2} \sum_{i=1}^{h-1} (K_i - K_{i-1}) C[K_i] \]

where we assumed that \(C[K] \) reaches 0 in \(K_0 = (K_0 - K_{i-1}) \).

Taking into account the put-call parity (14), we find that the third integral in the expression for \(e^{-rT} \text{Var}[S] \) is given by

\[I_3 = -\frac{e^{-rT}}{2} (\mathbb{E}[S] - K_0)^2. \]

Adding \(I_1, I_2 \) and \(I_3 \) and assuming that \(K_i - K_0 = K_0 - K_{i-1} \) leads to the approximate expression (21) for \(e^{-rT} \text{Var}[S] \).

References