

Foundations of Quantitative Risk Measurement

Chapter 1: Expected Utility Theory¹

Jan Dhaene & Daniël Linders

October 8-22, 2017

¹Chapter 1 from 'Managing and measuring actuarial risks', Dhaene, J., Denuit, M., Goovaerts, M., Kaas, R. & Linders, D. (2017), To be published.

0 – Outline

1. Introduction

The choice under risk Random variables and distributions

2. Expected utitlity

Utility functions Risk aversion Insurance

- 3. Integral stochastic orders
- 4. Stochastic dominance
- 5. Stop-loss order
- 6. Second degree stochastic dominance
- 7. Convex order
- 8. Convex order and equality in distribution

1 – Introduction

- Examples of decision making problems:
 - Individual: bear a risk or insure it (partially)?
 - Insurer: accept a risk or not?
 - Insurer: reinsure (part of) the accepted risks?
- Optimal choice of the decision maker depends on:
 - his initial wealth,
 - his risk appetite.
- Theories of choice under risk:
 - Expected utility theory: Cramer (1728), Bernouilli 1738), Von Neumann & Morgenstern (1947).
 - Dual theory of choice under risk: Yaari (1987), Roëll (1987), Schmeidler (1989).
- Common properties of these theories:
 - > Preference relations of a decision maker are qualitative in nature,
 - but follow from comparing numerical quantities.

1 – The St. Petersburg Paradox

Problem:

- ► A fair coin is tossed repeatedly until it lands head up. The income you receive is equal to 2ⁿ if the first head appears on the n-th toss. How much are you willing to pay for this game?
- Expected gain:
 - Assume that the coin is fair.
 - Probability to win the amount 2^n is $\frac{1}{2^n}$.
 - The expected gain:

$$\sum_{n=1}^{+\infty} (2^n) \times \frac{1}{2^n} = \sum_{n=1}^{+\infty} 1 = +\infty.$$

Conclusions:

- A decision maker will not pay $+\infty$.
- The price to play this game will be modest.
- The expectation is not (always) a good method to value a game.

1 – Introduction

Expected utility theory

- Classical expected utility theory:
 - Each decision maker assigns a utility u(x) to any fortune of amount x.
 - Utility functions are of a subjective nature.
 - 'Reasonable' utility functions share common properties:
 - non-decreasingness,
 - ★ decreasing marginal utility.
- Expected utility and insurance:
 - Why is an individual willing to pay a premium larger than the average expected loss?
 - Why are certain insurance covers to be preferred over others?
 - Behavior of insureds:
 - ★ moral hazard,
 - ★ anti-selection.

1 – The St. Petersburg paradox Solution of G. Cramer (1728) and D. Bernoulli (1738)

- Consider a decision maker with initial fortune w.
- He attaches a utility u(x) to a fortune x.
- The price to play the game is P.
- Assume our agent wins after *n* throws:
 - His utility if he wins after *n* throws: $u(w P + 2^n)$.
 - Probability to win after *n* throws: $\frac{1}{2^n}$.
- Expected utility:
 - At initiation, the utility he will reach if he plays the game is <u>unknown</u>.
 - Expected utility:

$$\sum_{n=1}^{+\infty} u \left(w - P + 2^n \right) \frac{1}{2^n}.$$

1 – The St. Petersburg paradox Solution of G. Cramer (1728) and D. Bernoulli (1738)

- The decision maker is an *expected utility maximizer*.
- If he doesn't play the game, his utility is u(w).
- He is willing to play the coin tossing game for a price P if

$$u(w) \le \sum_{n=1}^{+\infty} u(w - P + 2^n) \frac{1}{2^n}$$

- G. Cramer: $u(x) = \sqrt{x}$.
- D. Bernoulli: $u(x) = \ln x$.
- Example:
 - Take w = 10000 and $u(x) = \ln x$.
 - Then P = 14.2385. (Check this using MatLab or Excel!)

1 - The concept 'risk'

Potential gains/losses

- <u>A risk</u> is an event solely due to the whims of fate that may or may not take place
 - and that brings about some financial loss,
 - or a financial gain.
- Examples:
 - ► For an insurer, a risk is a potential loss (e.g. car insurance);
 - ► For an investor, a risk is a potential gain (e.g. investment).
- A risk always contains uncertainty:
 - The event that may or may not take place,
 - or the severity of the consequences of its occurence,
 - or the moment of its occurrence.
- Risk vs. loss:
 - 'Risk' and 'loss' are synonyms.
- Risks are modeled by *random variables*.

1 – Random variables

10/65

R.v.'s defined on a probability space

- Consider a random experiment, defined on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$:
 - Ω : set with all possible outcomes;
 - \mathcal{F} subsets of Ω , called events;
 - P : probability measure:

 $\mathbb{P}\left[A\right]=$ probability that the realization lies in the set $A\in\mathcal{F}$

- Definition:
 - A random variable X defined on (Ω, F, ℙ) is a *function* which attaches a *real number* to each possible outcome:

$$X: \Omega \longrightarrow \mathbb{R}.$$

- $\blacktriangleright ~\omega$ describes the state of a random phenomenon.
- $X(\omega)$ is a single aspect of the state ω .

1 – Random variables

• Question: What is the probability that $X(\omega)$ lies in the interval B?

- Probability function $\mathbb P$ assigns probabilities to subsets of Ω .
- The set $X^{-1}(B)^2$:

$$X^{-1}(B) = \{\omega | X(\omega) \in B\}$$

- $\mathbb{P}\left[X^{-1}(B)\right]$ = probability that X takes a value in B.
- Notation:

$$\mathbb{P}\left[X \in B\right] = \mathbb{P}\left[X^{-1}(B)\right].$$

- We assume that the probability $\mathbb{P}[X \in B]$ is known.
- The only uncertainty when considering a future random loss is the uncertainty about its particular future outcome, not the uncertainty about its 'distribution'.

²we silently assumed that X is a measurable function.

1 – Distribution functions cdf of a random variable

• <u>Cumulative distribution</u> function (cdf) F_X of the r.v. X:

$$F_{X}\left(x
ight)=\mathbb{P}\left[X\leq x
ight]$$
, for $x\in\mathbb{R}$.

- ► *F*_X is non-decreasing and right continuous.
- Assume F_X is <u>constant</u> on [a, b].
 - ▶ Probability of ending in (*a*, *b*] is zero.
- Assume F_X has a jump of size $\Delta(x)$ in x:

$$\Delta (x) = F_X (x) - F_X (x-) .$$

- $\Delta(x)$ is zero if F_X is continuous in x.
- For all $x \in \mathbb{R}$:

$$\mathbb{P}\left[X=x\right]=\Delta\left(x\right).$$

1 – Expected value

Expectation as a Riemann-Stieltjes integral

• The average or expected value of X is denoted by $\mathbb{E}[X]$:

$$\mathbb{E}\left[X\right] = \int_{-\infty}^{+\infty} x \mathrm{d}F_X\left(x\right).$$

• If F_X has only a discrete part:

$$\mathbb{E}\left[X\right] = \sum_{y} y \Delta\left(y\right) = \sum_{y} y \mathbb{P}\left[X = y\right].$$

• If F_X has a discrete and continuous part:

$$\mathbb{E}\left[X\right] = \int_{-\infty}^{+\infty} x f_X\left(x\right) dx + \sum_y y \Delta\left(y\right).$$

• $f_X(x)dx =$ probability that X takes a value in the [x, x + dx].

- Exercise:
 - Consider a r.v. X which takes the value 0 or 1 with equal probability. Determine the cdf F_X and $\mathbb{E}[X]$.

2 – Transformed wealth levels Utility functions

Definition (Utility function)

A **utility function** u is a real-valued *non-decreasing* function asserting a decision maker's utility-of-wealth u(x) to each possible level of wealth x.

- Decision makers have *non-negative marginal utility*: more wealth is always preferred over less wealth.
- In general, different decision makers will have different utility functions.
- We study classes of decision makers, which all share some common risk preferences

2 – Expected utility theory Expected utility

- Consider a decision maker having initial wealth w and facing a loss X.
- Wealth after suffering the loss X :

$$w - X$$
.

• Utility level after suffering the loss X

$$u(w-X)$$
.

•
$$u(w-X)$$
 is a r.v.

• The expected utility is the quantity:

$$\mathbb{E}\left[u(w-X)\right].$$

2 – Expected utility theory Profit-seeking decision makers

• The expected utility hypothesis:

Prefer loss X over loss Y $\iff \mathbb{E}[u(w-X)] \ge \mathbb{E}[u(w-Y)]$, Indifferent between X and Y $\iff \mathbb{E}[u(w-X)] = \mathbb{E}[u(w-Y)]$.

- Relations as above hold 'provided the expectations exist'.
- The decision maker is said to be an *expected utility maximizer*.
- Indifferent between losses with the same distribution.
- Standardized utility functions:
 - A utility function only needs to be determined up to positive linear transformations.
 - ★ Exercise: prove this statement!
 - Standardize the utility function u:

 $u\left(x_{0}
ight)=0$ and $u'\left(x_{0}
ight)=1$, for some $x_{0}\in\mathbb{R}.$

16/65

2 – Expected utility theory Transformed wealth levels

17/65

- Axiomatic framework Von Neumann & Morgenstern (1947):
 - Any decision maker whose behavior is in accordance with a given set of 'rational' axioms, is an expected utility maximizer.
- The 'independence axiom':
 - ► For any random losses X, Y and Z and for any Bernoulli r.v. I, independent of X, Y and Z, one has:

Prefer loss X over loss Y

 $\Rightarrow \quad \text{Prefer loss } IX + (1-I)Z \text{ over loss } IY + (1-I)Z$

Example.

2 – Expected utility theory Expected utility and risk aversion

Definition (concave function)

A real-valued function f, defined on the interval $I \subseteq \mathbb{R}$, is **concave** on I if for any $x_1, x_2 \in I$ and any $t \in [0, 1]$,

 $f(tx_1 + (1-t)x_2) \ge tf(x_1) + (1-t)f(x_2)$

- f is **convex** on the interval I if (-f) is concave on I.
- Assume *f* is twice differentiable:
 - f is concave $\Leftrightarrow f''(x) \leq 0$, for all $x \in I$.
 - f is convex $\Leftrightarrow f''(x) \ge 0$, for all $x \in I$.
- f is concave $\Rightarrow f$ is continuous.

18/65

2 – Risk aversion

Definition (Risk averse decision makers)

A decision maker is **risk averse** if his utility function u is concave on its domain.

- Risk averse decision makers have *decreasing marginal utility*.
 - Assume you gain the amount Δ .
 - Increase in utility: $u(x + \Delta) u(x)$.
 - ► For risk averse decision makers, the increase in utility is a decreasing function of the wealth level *x*.
- Interpretation:
 - As more wealth is available, less 'moral value' is placed on earning an additional Euro.

2 – Expected utility theory Expected utility and risk aversion

Theorem (Jensen's inequality (1906))

 $f \text{ is concave } \Rightarrow \mathbb{E}\left[f(Y)\right] \leq f\left(\mathbb{E}[Y]\right)$

• Corollary: If u is a concave utility function, then

$$\mathbb{E}\left[u(w-X)\right] \leq u\left(w-\mathbb{E}[X]\right).$$

- Exercise: prove this inequality.
- The risk averse decision maker's attitude towards risk:
 - Prefer certainty over uncertainty with the same expectation.
- The risk averse decision maker's attitude towards wealth:
 - Decreasing marginal utility.

20/65

2 – Expected utility theory Expected utility and risk aversion

• <u>Definition</u>:

A decision maker is risk neutral if

$$u(x) = ax + b$$

for given constants a > 0 and b.

- In this case, the expected utility hypothesis coincides with comparing expected values.
- The Arrow-Pratt measure of absolute risk aversion:

$$r(x) = \frac{-u''(x)}{u'(x)} = -\frac{d}{dx}\ln(u'(x))$$

For any risk averse decision maker, we have that $r \ge 0$.

2 – Expected utility theory Expected utility and insurance

- <u>Risk averse individual</u>:
 - ▶ facing a loss X ≥ 0,
 - utility function u(x),
 - ▶ initial wealth w.
- Risk averse insurer:
 - ► accepts X for a premium P,
 - ▶ utility function *U*,
 - ▶ initial wealth W.

• Under what conditions is an insurance contract feasible?

- From the viewpoint of the individual,
- from the viewpoint of the insurer.

2 – Expected utility theory Expected utility and insurance

• Viewpoint of the individual:

He is only willing to underwrite the insurance if

$$u(w-P) \ge \mathbb{E}[u(w-X)].$$

• There exists always a premium P^M such that

$$u\left(w-P^{M}\right)=\mathbb{E}\left[u\left(w-X\right)\right].$$

- \star *u* is non-decreasing.
- \star *u* is concave, hence also continuous.
- \star P^M is the maximum premium the insured is willing to pay.
- From Jensen's inequality:

$$P^M \ge \mathbb{E}\left[X\right].$$

Exericse: prove this inequality.

2 – Expected utility theory Expected utility and insurance

- Viewpoint of the insurer:
 - He is willing to insure the risk X at a premium P if

$$U(W) \leq \mathbb{E}\left[U(W+P-X)\right].$$

• Minimal premium P^m he requires follows from

$$U(W) = \mathbb{E}\left[U(W + P^m - X)\right].$$

From Jensen's inequality:

$$P^m \ge \mathbb{E}\left[X\right].$$

* <u>Exercise</u>: prove this inequality.

• Condition for an insurance contract to be feasible:

$$P^m \le P \le P^M$$

2 – Expected utility theory Expected utility and mutual exclusivity

Definition:

► The random vector (X₁, X₂,..., X_n) is said to be mutually exclusive if the following conditions hold:

$$\mathbb{P}\left[X_i \neq 0, X_j \neq 0\right] = 0, \qquad \forall i \neq j$$

- Examples of mutual exclusive couples:
 - Insurance with a franchise deductible:

$$\varphi\left(X\right) = \left\{ \begin{array}{ll} 0 \text{ if } X \leq d \\ X \text{ otherwise} \end{array} \right. \quad \text{ and } X - \varphi\left(X\right) = \left\{ \begin{array}{ll} X \text{ if } X \leq d \\ 0 \text{ otherwise} \end{array} \right.$$

- Term insurance with doubled capital in case of accidental death.
- Endowment insurance.

2 – Expected utility theory Expected utility and mutual exclusivity

Theorem (Additivity property of mutual exclusive losses)

Consider a utility function u, satisfying u(w) = 0. If X and Y are mutual exclusive losses, then

26/65

 $\mathbb{E}\left[u(w-X-Y)\right] = \mathbb{E}\left[u(w-X)\right] + \mathbb{E}\left[u(w-Y)\right].$

- A general utility function u can always be standardized such that u(w) = 0.
- Interpretation:
 - ► The utility after bearing the loss *X* + *Y* is the sum of the individual expected utilities.

3 – Integral stochastic orders Introduction: ordering of risks

• The perception of risk is captured in a utility function u:

u(x) = moral value of having a wealth equal to x.

- A decision maker is assumed to be an expected utility maximizer:
 - ▶ for a decision maker with utility function u, loss X is 'more preferable' than loss Y if:

$$\mathbb{E}\left[u\left(w-X\right)\right] \geq \mathbb{E}\left[u\left(w-Y\right)\right].$$

- there may exist another decision maker with utility function v, who prefers Y over X.
- The notion 'more preferable' depends on:
 - the distribution of the risk itself;
 - the risk preferences of a particular decision maker.

3 – Integral stochastic orders The concept 'more preferable'

• Equality in distribution:

• Two r.v.'s X and Y are said to be equal in distribution if:

$$F_{X}\left(x
ight)=F_{Y}\left(x
ight)$$
, for all $x\in\mathbb{R}.$

• Notation:
$$X \stackrel{\mathsf{d}}{=} Y$$
.

- If X = Y, all decision makers will be indifferent between risk X and risk Y.
- If X ≠ Y, the notion 'more preferable' should be based on the distribution of the loss alone, not on a particular utility function.

3 – Integral stochastic orders Definition

- A decision maker's utility function u is in general unknown.
- Group all 'reasonable' decision makers in a class \mathcal{U} .
- u(-X) represents the utility of a decision maker with zero initial wealth, after suffering the loss X.
- Integral stochastic order based on the class \mathcal{U} :

$$X \preceq_{\mathcal{U}} Y \Leftrightarrow \mathbb{E}\left[u(-X)\right] \ge \mathbb{E}\left[u(-Y)\right]$$
 for all $u \in \mathcal{U}$.

Interpretation:

► All decision makers with <u>zero initial wealth</u> and belonging to the class U prefer the loss X over Y.

3 – Integral stochastic orders

- Consider two losses X and Y, for which $X \preceq_{\mathcal{U}} Y$.
- Consider a decision maker with utility function *u* and *initial wealth w*.
 - ► The decision maker prefers X over Y if

$$\mathbb{E}\left[u(w-X)\right] \ge \mathbb{E}\left[u(w-Y)\right].$$
(1)

- $X \preceq_{\mathcal{U}} Y$ does not necessarily imply (1).
- Assumption concerning \mathcal{U} :
 - Define the utility function v as: v(x) = u(w + x).

$$u \in \mathcal{U} \Rightarrow v \in \mathcal{U}.$$

Interpretation:

► The preference of *X* over *Y* does not depend on the initial wealth.

30/65

3 – Integral Stochastic Orders Applications

- Consider an insurer facing the risk X.
- The cdf of X will in general be unknown or too cumbersome to work with.
 - ▶ The only information available is that *X* belongs to some class:

 $X \in \mathcal{A}$.

- Picking a particular member of $\mathcal A$ will lead to model risk.
- Making the wrong choice can lead to serious underestimation of the real risk.

3 – Integral Stochastic Orders Applications

• Replace the loss X by Y, such that for every $Z \in \mathcal{A}^3$:

 $Z \preceq_{\mathcal{U}} Y$.

- The r.v. Y describes a *worst case scenario*.
- Calculating actuarial quantities for Y is a 'prudent strategy'.
- References:
 - Exotic option pricing: Schoutens, Simons & Tistaert (2004).
 - Risk measures: Barrieu & Scandolo (2013).

³For simplicity we assume that such Y exists.

3 – Integral Stochastic Orders Losses versus gains

- If X denotes a loss:
 - high positive values are big losses;
 - prefer loss X over Y if

$$\mathbb{E}\left[u(w-X)\right] \geq \mathbb{E}\left[u(w-Y)\right].$$

• -X is a r.v. representing gains.

- If X denotes a gain:
 - negative values are losses;
 - ► prefer gain Y over X if

$$\mathbb{E}\left[u(w+X)\right] \le \mathbb{E}\left[u(w+Y)\right].$$

► -X is a loss r.v.

4 – Stochastic Dominance

34/65

Definition (Stochastic dominance)

Two r.v.'s X and Y are ordered in the stochastic dominance sense, notation $X \preceq_{st} Y$ if

 $\mathbb{E}\left[u(-X)\right] \geq \mathbb{E}\left[u(-Y)\right],$

for all non-decreasing function u.

 \bullet The class ${\cal U}$ is:

 $\mathcal{U} = \{u | u \text{ is a non-decreasing utility function}\}.$

- $\mathcal U$ is the class of all decision makers who prefer more over less wealth.
- Interpretation:
 - If $X \preceq_{st} Y$, all decision makers will prefer X over Y.
 - Replacing loss X by loss Y is a prudent strategy.

4 – Stochastic dominance Losses versus gains

• u(x) is non-decreasing $\Leftrightarrow -u(-x)$ is non-decreasing.

• For a non-decreasing utility function u, define the function v as

$$v(x) = -u(-x). \tag{2}$$

- The function v is again a utility function in the class \mathcal{U} .
- Stochastic dominance in terms of gains:

$$X \preceq_{st} Y \Leftrightarrow \mathbb{E}\left[v(X)\right] \leq \mathbb{E}\left[v(Y)\right]$$
,

for v a non-decreasing utility function.

- Interpretation:
 - $X \preceq_{st} Y$ means that a gain Y is more attractive than a gain X.

35/65

4 – Stochastic Dominance

Characterization in terms of the cdf

• Characterization of stochastic dominance:

 $X \preceq_{st} Y \Leftrightarrow F_X(x) \ge F_Y(x)$, for all $x \in \mathbb{R}$.

• Other characterization:

$$X \preceq_{st} Y \Leftrightarrow \mathbb{P}\left[X > x\right] \leq \mathbb{P}\left[Y > x\right], \quad \text{for all } x \in \mathbb{R}.$$

- Interpretation:
 - For losses: prefer the risk which has the smallest upper tail and largest lower tail.
 - For gains: prefer the risk which has the largest upper tail and smallest lower tail.
- Smaller loss X is equivalent with a larger gain -X:

$$X \preceq_{st} Y \Leftrightarrow -Y \preceq_{st} -X.$$

4 – Stochastic dominance

Stochastic dominance and ordered means

• The expected value $\mathbb{E}[X]$:

$$\mathbb{E}\left[X\right] = -\int_{-\infty}^{0} F_X(x) \mathrm{d}x + \int_{0}^{+\infty} \left(1 - F_X(x)\right) \mathrm{d}x.$$

• Difference in means in terms of cdf's:

$$\mathbb{E}[Y] - \mathbb{E}[X] = \int_{-\infty}^{+\infty} (F_X(x) - F_Y(x)) \, \mathrm{d}x.$$

- Exericse: Prove that this implication holds.
- Stochastic dominance implies ordered means:

$$X \preceq_{st} Y \Rightarrow \mathbb{E}[X] \leq \mathbb{E}[Y].$$

Exericse: Prove that this implication holds.

4 – Stochastic dominance

Capturing a distribution in a real number

Theorem

Consider two r.v.'s X and Y. Then the following statements are equivalent:

38/65

- <u>Proof:</u> Good exercise to try at home.
- Interpretation:
 - Consider two losses X and Y with $X \preceq_{st} Y$.
 - Then, the mean is sufficient to characterize the losses.
 - If 𝔼 [X] = 𝔼 [Y], any decision maker will be indifferent between the losses X and Y.

5 – Stop-loss order Definition

Definition (Stop-loss order)

Two r.v.'s X and Y are ordered in the stop-loss order sense, notation $X \preceq_{sl} Y$ if $\mathbb{E} \left[w(-X) \right] > \mathbb{E} \left[w(-X) \right]$

$$\mathbb{E}\left[u(-X)\right] \geq \mathbb{E}\left[u(-Y)\right]$$
,

for all non-decreasing and **concave** functions u.

• The class ${\mathcal U}$ is:

 $\mathcal{U} = \{u | u \text{ is a non-decreasing and concave utility function}\}.$

- $\mathcal U$ is the class of all **risk-averse** decision makers.
- Interpretation:
 - ▶ If $X \preceq_{sl} Y$, all risk-averse decision makers will prefer X over Y.
 - Replacing loss X by loss Y is a prudent strategy.

5 – Stop-loss order Losses versus gains

• Relating convex and concave functions:

The following statements are equivalent:

★ u(x) is non-decreasing and concave,

★ v(x) = -u(-x) is non-decreasing and convex.

- Alternative definition for stop-loss order:
 - $X \preceq_{sl} Y$ if, and only if,

 $\mathbb{E}\left[v(X)\right] \leq \mathbb{E}\left[v(Y)\right],$

for all non-decreasing convex functions v.

- ► *v* is not a utility function of a **risk-averse** decision maker.
- Stop-loss order has no interpretation in terms of gains when considering risk-averse decision makers.

5 – Stop-loss premium Example: Reinsurance

• <u>Reinsurance:</u>

- Total risk of an insurer = X.
- > The insurer moves the biggest losses to the reinsurer.

★ Insurer pays the losses below K:

Payments of Insurer =
$$\begin{cases} X, & \text{if } X \leq K \\ K, & \text{if } X > K \end{cases}.$$

★ The reinsurer starts paying when the losses exceed the threshold *K*:

Payments of Reinsurer =
$$\begin{cases} 0, & \text{if } X \leq K \\ X - K, & \text{if } X > K \end{cases}$$

$$\stackrel{\text{notation}}{=} (X - K)_{+}$$

- Expected payment of the reinsurer: $\mathbb{E}\left[\left(X-K\right)_{+}\right]$.
 - ► E [(X K)₊] gives information about the big losses, which have to be paid by the reinsurer.

5 – Stop-loss premium

42/65

Example: Call option

- X denotes the price of a stock (e.g. Apple) at some future date T (e.g. one year).
- Call option
 - ► A call option with strike *K* and maturity *T* gives the buyer the right to buy the stock at time *T* for the price *K*.
 - > The buyer will benefit from this product when the stock price increases.
- At maturity, the buyer will receive a pay-off equal to:

Pay-off at maturity =
$$\begin{cases} 0, & \text{if } X \leq K \\ X - K, & \text{if } X > K \end{cases}$$
$$\stackrel{\text{notation}}{=} (X - K)_{+}.$$

• The expected pay-off is given by:

$$\mathbb{E}\left[\left(X-K\right)_+\right].$$

5 – Definition

Definition

The stop-loss premium of the r.v. X with retention K is given by

 $\mathbb{E}\left[\left(X-K\right)_+\right].$

• It can be proven that:

$$\mathbb{E}\left[\left(X-K\right)_{+}\right] = \int_{K}^{+\infty} \left(1-F_{X}\left(x\right)\right) \mathsf{d}x.$$

• Interpretation:

- ▶ Upper tail at level K.
- ▶ $\mathbb{E}[(X-K)_+]$ is the surface between the cdf F_X and the constant function 1, from K to $+\infty$.

5 – Stop-loss transform Measures for the upper tail

- Stop-loss transform:
 - $\pi_X(x) = \mathbb{E}\left[(X x)_+ \right].$
 - π_X is strictly decreasing and convex.
- The stop-loss transform characterizes the distribution of X:

$$\pi'_X(x+) = F_X(x) - 1,$$

for $x \in \mathbb{R}$.

- $\pi'_X(x+)$ is the right derivative of the function π_X in the point x.
- Alternative definition for stop-loss order:
 - ▶ $X \preceq_{sl} Y \Leftrightarrow \mathbb{E}\left[(X K)_+\right] \le \mathbb{E}\left[(Y K)_+\right]$, for all $K \in \mathbb{R}$.
 - $X \preceq_{sl} Y$ means that X has uniformly smaller upper tails than Y.

Theorem (Crossing condition for stop-loss order)

If for two r.v.'s, there is a real number c such that

 $F_X(x) \leq F_Y(x)$, for all x < c, $F_X(x) \geq F_Y(x)$, for all $x \geq c$,

and if also $\mathbb{E}[X] \leq \mathbb{E}[Y]$, then

 $X \preceq_{sl} Y$.

• Exercise: Give a graphical proof of this Theorem.

6 – Second degree stochastic dominance Definition

Definition (Second degree stochastic dominance)

Two r.v.'s X and Y are ordered in the Second degree stochastic dominance sense, notation $X \preceq_{sst} Y,$ if

47/65

 $\mathbb{E}\left[u(X)\right] \leq \mathbb{E}\left[u(Y)\right],$

for all non-decreasing and concave functions u.

• The class ${\cal U}$ is:

 $\mathcal{U} = \{u | u \text{ is a non-decreasing and concave utility function}\}.$

- $\mathcal U$ is the class of all **risk-averse** decision makers.
- Interpretation:

• If $X \preceq_{sl} Y$, all risk-averse decision makers will prefer gain Y over X.

6 - Lower tail transform

48/65

Example: Put option

- X denotes the price of a stock (e.g. Apple) at some future date T (e.g. one year).
- Put Option
 - ► A **put option** with strike *K* and maturity *T* gives the buyer the right to sell the stock at time *T* for the price *K*.
 - > The buyer will benefit from this product when the stock price decreases.
- At maturity, the buyer will receive a pay-off equal to:

Pay-off at maturity =
$$\begin{cases} K - X, & \text{if } X \le K \\ 0, & \text{if } X > K \\ \equiv & (K - X)_+ \end{cases}$$

• The expected pay-off is given by:

$$\mathbb{E}\left[\left(K-X\right)_+\right].$$

6 – Measures for the lower tail

- Measure the lower tail using $\mathbb{E}\left[\left(K-X\right)_{+}\right].$
- It can be proven that:

$$\mathbb{E}\left[\left(K-X\right)_{+}\right] = \int_{-\infty}^{K} F_{X}\left(x\right) dx.$$

- Interpretation:
 - ► Lower tail at level K.
- Iower tail transform:
 - $\lambda_X(x) = \mathbb{E}\left[(x X)_+\right]$
 - A distribution is characterized by its lower tail transform:

$$\lambda_X'(x+) = F_X(x) \,.$$

6 – Second degree stochastic dominance Losses versus gains

- 2nd degree stochastic dominance has no interpretation in terms of losses for risk-averse decision makers.
- Stop-loss and 2nd degree stochastic dominance:

$$X \preceq_{sst} Y \Leftrightarrow -Y \preceq_{sl} -X$$

• Alternative definition:

$$X \preceq_{sst} Y \Leftrightarrow \mathbb{E}\left[(K-X)_+\right] \ge \mathbb{E}\left[(K-Y)_+\right], \text{ for all } K \in \mathbb{R}.$$

• Interpretation:

The larger the lower tails of a gain, the less attractive this gain has to be considered. Definition (Crossing condition for sst-order)

If for two r.v.'s, there is a real number c such that

 $F_X(x) \ge F_Y(x)$, for all x < c, $F_X(x) \le F_Y(x)$, for all $x \ge c$,

and if also $\mathbb{E}\left[X\right] \leq \mathbb{E}\left[Y\right]$, then

 $X \preceq_{sst} Y$.

• Exercise: Give a graphical proof of this Theorem.

7 – Convex order Definition

Definition (Convex order)

Two r.v.'s X and Y are ordered in the convex order sense, notation $X \preceq_{\mathit{cx}} Y$ if

 $\mathbb{E}[X] = \mathbb{E}[Y]$ and $\mathbb{E}[u(-X)] \ge \mathbb{E}[u(-Y)]$,

for all non-decreasing and **concave** functions *u*.

- $\bullet \ \mathcal{U}$ is the class of all risk-averse decision makers.
- Convex order gives the preferences of risk-averse decision makers between losses with the **same mean**.
- Interpretation:
 - A loss X is replaced by a less attractive r.v. Y, 'which is the same on average'.

7 – The put-call parity

• Connection between upper and lower tail:

$$\mathbb{E}\left[\left(X-K\right)_{+}\right] = \mathbb{E}\left[\left(K-X\right)_{+}\right] + \mathbb{E}\left[X\right] - K.$$

- This expression is called the **put-call parity** and has (in a modified form) wide applications in option pricing theory.
- The put-call parity can be proven in a graphical way, using the following expressions:

$$\mathbb{E} [X] = -\int_{-\infty}^{0} F_X(x) dx + \int_{0}^{+\infty} (1 - F_X(x)) dx,$$
$$\mathbb{E} [(X - K)_+] = \int_{K}^{+\infty} (1 - F_X(x)) dx,$$
$$\mathbb{E} [(K - X)_+] = \int_{-\infty}^{K} F_X(x) dx.$$

7 – Convex order

Ordered upper and lower tails

$$X \preceq_{cx} Y \Leftrightarrow \mathbb{E} \left[X \right] = \mathbb{E} \left[Y \right]$$
 and $X \preceq_{sl} Y$

$$X \preceq_{cx} Y \Leftrightarrow \left\{ \begin{array}{l} \mathbb{E}\left[X\right] = \mathbb{E}\left[Y\right], \\ \mathbb{E}\left[\left(X - K\right)_{+}\right] \leq \mathbb{E}\left[\left(Y - K\right)_{+}\right], \text{ for all } K, \end{array} \right.$$

- Follows directly from the definition of stop-loss order.
- <u>Convex order and lower tail transform:</u>

$$X \preceq_{cx} Y \Leftrightarrow \left\{ \begin{array}{l} \mathbb{E}\left[X\right] = \mathbb{E}\left[Y\right], \\ \mathbb{E}\left[\left(K - X\right)_{+}\right] \leq \mathbb{E}\left[\left(K - Y\right)_{+}\right], \text{ for all } K, \end{array} \right.$$

Follows directly from the put-call parity.

7 – Convex order Ordered upper and lower tails

• Convex order and second degree stochastic dominance:

$$X \preceq_{cx} Y \Leftrightarrow \mathbb{E}[X] = \mathbb{E}[Y]$$
 and $Y \preceq_{sst} X$

- Follows directly from the definition of 2nd degree stochastic order.
- Convex order and lower and upper tail transforms:

$$\begin{split} X \preceq_{cx} Y & \Leftrightarrow & \left\{ \begin{array}{l} X \preceq_{sl} Y, \\ Y \preceq_{sst} X, \end{array} \right., \\ & \Leftrightarrow & \left\{ \begin{array}{l} \mathbb{E} \left[(X-K)_+ \right] \leq \mathbb{E} \left[(Y-K)_+ \right], \\ \mathbb{E} \left[(K-X)_+ \right] \leq \mathbb{E} \left[(K-Y)_+ \right], \end{array} \right. \text{for all } K, \end{split} \end{split}$$

• The proof of \Rightarrow follows from previous relations.

7 – Convex order

Comparing variability of risks

• Convex order and convex/concave functions:

```
X \preceq_{cx} Y \Leftrightarrow \mathbb{E}[u(X)] \leq \mathbb{E}[u(Y)],
```

for all convex functions u.

- $X \preceq_{cx} Y$ implies
 - ▶ Y has heavier upper tails than X,
 - Y has heavier lower tails than X.
- Convex order has an interpretation in terms of losses and gains.

$$X \preceq_{cx} Y \Leftrightarrow -X \preceq_{cx} -Y.$$

• R.v. X is 'less variable' than r.v. Y.

7 - Crossing theorem

(3)

Theorem

If for two r.v.'s X and Y a real number c exists such that

 $F_X(x) \le F_Y(x)$ for all x < c, $F_X(x) \ge F_Y(x)$ for $x \ge c$,

and moreover $\mathbb{E}[X] = \mathbb{E}[Y]$, then $X \preceq_{cx} Y$.

• Exercise:

8 – Upper and lower tail transforms as building blocks⁴ 59/65

Lemma

For any $a \in \mathbb{R}$, u(X) can be expressed as

$$u(X) = u(a) + u'(a)(X - a) + \int_{-\infty}^{a} u''(K)(K - X)_{+} dK \qquad (4)$$
$$+ \int_{a}^{+\infty} u''(K)(X - K)_{+} dK.$$

• At a certain time, one has to pay the amount u(X).

- The pay-off u(X) can be decomposed using:
 - pay-off of call options: $(X K)_+$,
 - pay-off of put options: $(K X)_+$.
- Pay-offs of the form $(X K)_+$ and $(K X)_+$ are the building blocks for more complex pay-offs.

⁴see Carr & Madan (2001) and Cheung, Dhaene, Kukush & Linders (2013)

8 – An important lemma

Lemma

For a r.v. X, we can decompose $\mathbb{E}\left[u\left(X\right)\right]$ as

$$\mathbb{E}\left[u\left(X\right)\right] = u\left(\mathbb{E}\left[X\right]\right) + \int_{-\infty}^{\mathbb{E}\left[X\right]} u''\left(K\right) \mathbb{E}\left[\left(K-X\right)_{+}\right] dK + \int_{\mathbb{E}\left[X\right]}^{+\infty} u''\left(K\right) \mathbb{E}\left[\left(X-K\right)_{+}\right] dK.$$

 \bullet For a risk-averse decision maker, the expected utility $\mathbb{E}\left[u\left(X\right)\right]$ can be written as

the utility of $\mathbb{E}[X]$ + portion of the tails.

• If $u''(x) \leq 0$, we immediately find Jensen's inequality:

 $\mathbb{E}\left[u\left(X\right)\right] \leq u\left(\mathbb{E}\left[X\right]\right).$

60/65

8 – An important lemma Example: Variance

• Variance decomposition formula

• Take
$$u(x) = (x - \mathbb{E}[X])^2$$
, then:

$$\frac{1}{2}\mathsf{Var}[X] = \int_{-\infty}^{\mathbb{E}[X]} \mathbb{E}\left[(K - X)_+ \right] \mathsf{d}K + \int_{\mathbb{E}[X]}^{+\infty} \mathbb{E}\left[(X - K)_+ \right] \mathsf{d}K.$$

• Graphical representation:

8 – Comparing variances Capturing a distribution in a real number

Convex ordered r.v.'s:

• We can prove that $X \preceq_{cx} Y$, then

$$\int_{-\infty}^{\infty} \left(\mathbb{E}\left[\left(Y - K \right)_{+} \right] - \mathbb{E}\left[\left(X - K \right)_{+} \right] \right) \mathrm{d}K = \frac{1}{2} \left(\mathsf{Var}\left[Y \right] - \mathsf{Var}\left[X \right] \right).$$

- Comparing variances is meaningful when comparing SL-premiums of convex ordered r.v.'s.
- If $X \preceq_{cx} Y$, then $Var[X] \leq Var[Y]$.
- The following statements are equivalent:

•
$$X \preceq_{cx} Y$$
 and $Var[Y] = Var[X]$

•
$$X \stackrel{\mathsf{d}}{=} Y$$
.

Theorem

Consider the r.v.'s X and Y. Let u be a strictly concave function such that $\mathbb{E}[u(Y)]$ is finite. Then $X \prec_{cx} Y$ and $\mathbb{E}[u(X)] = \mathbb{E}[u(Y)]$ (5)

63/65

(6)

is equivalent with

$$X \stackrel{\mathrm{d}}{=} Y.$$

- The function *u* has to have an absolutely continuous derivative to ensure all integrals are well-defined.
- The results hold for concave/convex twice differentiable utility functions.
- The condition $\mathbb{E}[u(X)] = \mathbb{E}[u(Y)]$ can be replaced by $\mathbb{E}[u(-X)] = \mathbb{E}[u(-Y)].$

8 – Interpretation

• Consider a decision maker with a strictly concave and twice differentiable utility function:

u''(x) < 0.

• He has to choose between two convex ordered gains:

$$X \preceq_{cx} Y$$
.

- The decision maker values X using the whole distribution.
- If he prefers *X* over *Y*:

$$\mathbb{E}\left[u\left(X\right)\right] > \mathbb{E}\left[u\left(Y\right)\right],$$

then X and Y cannot be equal (in distribution).

• If he is indifferent between X and Y, any other decision maker will be indifferent.

8 – References

- Barrieu, P. M. & Scandolo, G. (2013) 'Assessing .nancial model risk', Technical report. Available at SSRN: http://ssrn.com/abstract=2284101.
- Carr, P. & Madan, D. (2001) 'Towards a theory of volatility trading', in 'Option Pricing, Interest Rates and Risk Management', Cambridge University Press, pp. 458–476.
- Cheung, K. C., Dhaene, J., Kukush, A. & Linders, D. (2013), 'Ordered random vectors and equality in distribution', Scandinavian Actuarial Journal.
- Von Neumann, J. & Morgenstern, O. (1947), 'Theory of games and economic behavior', Princeton University Press. 2nd edition.
- Schoutens, W., Simons, E. & Tistaert, J. (2004) 'A perfect calubration! Now what?' Wilmott Magazine, March 2004.
- Yaari, M. E. (1987), 'The dual theory of choice under risk', Econometrica 55(1), 95 115.