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October 8-22, 2017

1Chapter 1 from ‘Managing and measuring actuarial risks’, Dhaene, J., Denuit, M.,
Goovaerts, M., Kaas, R. & Linders, D. (2017), To be published.



0 – Outline 2/65

1. Introduction
The choice under risk
Random variables and distributions

2. Expected utitlity
Utility functions
Risk aversion
Insurance

3. Integral stochastic orders

4. Stochastic dominance

5. Stop-loss order

6. Second degree stochastic dominance

7. Convex order

8. Convex order and equality in distribution



1 – Introduction 3/65

Examples of decision making problems:
I Individual : bear a risk or insure it (partially)?

I Insurer : accept a risk or not?

I Insurer : reinsure (part of) the accepted risks?

Optimal choice of the decision maker depends on:
I his initial wealth,

I his risk appetite.

Theories of choice under risk:
I Expected utility theory: Cramer (1728), Bernouilli 1738), Von

Neumann & Morgenstern (1947).

I Dual theory of choice under risk: Yaari (1987), Roëll (1987),
Schmeidler (1989).

Common properties of these theories:
I Preference relations of a decision maker are qualitative in nature,

I but follow from comparing numerical quantities.
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Problem:

I A fair coin is tossed repeatedly until it lands head up. The income you
receive is equal to 2n if the first head appears on the n-th toss. How
much are you willing to pay for this game?

Expected gain:

I Assume that the coin is fair.

I Probability to win the amount 2n is 1
2n .

I The expected gain:

+∞

∑
n=1

(2n)× 1
2n =

+∞

∑
n=1

1 = +∞.

Conclusions:

I A decision maker will not pay +∞.

I The price to play this game will be modest.

I The expectation is not (always) a good method to value a game.
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Expected utility theory

Classical expected utility theory:

I Each decision maker assigns a utility u(x) to any fortune of amount x.

I Utility functions are of a subjective nature.

I ‘Reasonable’ utility functions share common properties:

F non-decreasingness,

F decreasing marginal utility.

Expected utility and insurance:

I Why is an individual willing to pay a premium larger than the average
expected loss?

I Why are certain insurance covers to be preferred over others?

I Behavior of insureds:

F moral hazard,

F anti-selection.
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Solution of G. Cramer (1728) and D. Bernoulli (1738)

Consider a decision maker with initial fortune w.

He attaches a utility u(x) to a fortune x.

The price to play the game is P.

Assume our agent wins after n throws:

I His utility if he wins after n throws: u (w− P + 2n) .

I Probability to win after n throws: 1
2n .

Expected utility:

I At initiation, the utility he will reach if he plays the game is unknown.

I Expected utility:
+∞

∑
n=1

u (w− P + 2n)
1
2n .
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Solution of G. Cramer (1728) and D. Bernoulli (1738)

The decision maker is an expected utility maximizer.

If he doesn’t play the game, his utility is u(w).

He is willing to play the coin tossing game for a price P if

u(w) ≤
+∞

∑
n=1

u (w− P + 2n)
1
2n

I G. Cramer: u(x) =
√

x.

I D. Bernoulli: u(x) = ln x.

Example:

I Take w = 10000 and u(x) = ln x.

I Then P = 14.2385. (Check this using MatLab or Excel!)
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Potential gains/losses

A risk is an event solely due to the whims of fate that may or may
not take place

I and that brings about some financial loss,

I or a financial gain.

Examples:
I For an insurer, a risk is a potential loss (e.g. car insurance);

I For an investor, a risk is a potential gain (e.g. investment).

A risk always contains uncertainty:
I The event that may or may not take place,

I or the severity of the consequences of its occurence,

I or the moment of its occurrence.

Risk vs. loss:
I ‘Risk’ and ‘loss’ are synonyms.

Risks are modeled by random variables.
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R.v.’s defined on a probability space

Consider a random experiment, defined on the probability space
(Ω,F , P) :

I Ω : set with all possible outcomes;

I F subsets of Ω, called events;

I P : probability measure:

P [A] = probability that the realization lies in the set A ∈ F

Definition:

I A random variable X defined on (Ω,F , P) is a function which attaches
a real number to each possible outcome:

X : Ω −→ R.

I ω describes the state of a random phenomenon.

I X(ω) is a single aspect of the state ω.
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Question: What is the probability that X(ω) lies in the interval B?

I Probability function P assigns probabilities to subsets of Ω.

I The set X−1(B)2:

X−1(B) = {ω|X(ω) ∈ B}

I P
[
X−1(B)

]
= probability that X takes a value in B.

I Notation:
P [X ∈ B] = P

[
X−1(B)

]
.

We assume that the probability P[X ∈ B] is known.

The only uncertainty when considering a future random loss is the
uncertainty about its particular future outcome, not the uncertainty
about its ‘distribution’.

2we silently assumed that X is a measurable function.
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cdf of a random variable

Cumulative distribution function (cdf) FX of the r.v. X :

FX (x) = P [X ≤ x] , for x ∈ R.

I FX is non-decreasing and right continuous.

Assume FX is constant on [a, b].
I Probability of ending in (a, b] is zero.

Assume FX has a jump of size ∆ (x) in x :
I ∆ (x) = FX (x)− FX (x−) .

I ∆ (x) is zero if FX is continuous in x.

I For all x ∈ R :
P [X = x] = ∆ (x) .
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Expectation as a Riemann-Stieltjes integral

The average or expected value of X is denoted by E [X] :

E [X] =
∫ +∞

−∞
xdFX (x) .

If FX has only a discrete part:

E [X] = ∑
y

y∆ (y) = ∑
y

yP [X = y] .

If FX has a discrete and continuous part:

E [X] =
∫ +∞

−∞
xfX (x) dx + ∑

y
y∆ (y) .

I fX (x)dx = probability that X takes a value in the [x, x + dx] .

Exercise:
I Consider a r.v. X which takes the value 0 or 1 with equal probability.

Determine the cdf FX and E [X].



2 – Transformed wealth levels 14/65

Utility functions

Definition (Utility function)

A utility function u is a real-valued non-decreasing function asserting a
decision maker’s utility-of-wealth u(x) to each possible level of wealth x.

Decision makers have non-negative marginal utility : more wealth is
always preferred over less wealth.

In general, different decision makers will have different utility
functions.

We study classes of decision makers, which all share some common
risk preferences
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Expected utility

Consider a decision maker having initial wealth w and facing a loss X.

Wealth after suffering the loss X :

w−X.

Utility level after suffering the loss X

u (w−X) .

I u (w−X) is a r.v.

The expected utility is the quantity:

E [u(w−X)] .
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Profit-seeking decision makers

The expected utility hypothesis:

Prefer loss X over loss Y ⇐⇒ E [u(w−X)] ≥ E [u(w− Y)] ,
Indifferent between X and Y ⇐⇒ E [u(w−X)] = E [u(w− Y)] .

I Relations as above hold ‘provided the expectations exist’.

I The decision maker is said to be an expected utility maximizer.

I Indifferent between losses with the same distribution.

Standardized utility functions:
I A utility function only needs to be determined up to positive linear

transformations.
F Exercise: prove this statement!

I Standardize the utility function u:

u (x0) = 0 and u′ (x0) = 1, for some x0 ∈ R.
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Transformed wealth levels

Axiomatic framework - Von Neumann & Morgenstern (1947):

I Any decision maker whose behavior is in accordance with a given set of
‘rational’ axioms, is an expected utility maximizer.

The ‘independence axiom’:

I For any random losses X, Y and Z and for any Bernoulli r.v. I,
independent of X, Y and Z, one has:

Prefer loss X over loss Y
⇒ Prefer loss IX + (1− I)Z over loss IY + (1− I)Z

I Example.
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Expected utility and risk aversion

Definition (concave function)

A real-valued function f , defined on the interval I ⊆ R, is concave on I if
for any x1, x2 ∈ I and any t ∈ [0, 1],

f (tx1 + (1− t)x2) ≥ tf (x1) + (1− t)f (x2)

f is convex on the interval I if (−f ) is concave on I.

Assume f is twice differentiable:

I f is concave ⇔ f ′′ (x) ≤ 0, for all x ∈ I.

I f is convex ⇔ f ′′ (x) ≥ 0, for all x ∈ I.

f is concave ⇒ f is continuous.
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Definition (Risk averse decision makers)

A decision maker is risk averse if his utility function u is concave on its
domain.

Risk averse decision makers have decreasing marginal utility.

I Assume you gain the amount ∆.

I Increase in utility: u(x + ∆)− u(x).

I For risk averse decision makers, the increase in utility is a decreasing
function of the wealth level x.

Interpretation:

I As more wealth is available, less ‘moral value’ is placed on earning an
additional Euro.
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Expected utility and risk aversion

Theorem (Jensen’s inequality (1906))

f is concave ⇒ E [f (Y)] ≤ f (E[Y])

Corollary: If u is a concave utility function, then

E [u(w−X)] ≤ u (w−E[X]) .

I Exercise: prove this inequality.

The risk averse decision maker’s attitude towards risk:

I Prefer certainty over uncertainty with the same expectation.

The risk averse decision maker’s attitude towards wealth:

I Decreasing marginal utility.
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Expected utility and risk aversion

Definition:
A decision maker is risk neutral if

u(x) = ax + b

for given constants a > 0 and b.

In this case, the expected utility hypothesis coincides with comparing
expected values.

The Arrow-Pratt measure of absolute risk aversion:

r(x) =
−u′′(x)

u′(x)
= − d

dx
ln(u′(x))

For any risk averse decision maker, we have that r ≥ 0.
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Expected utility and insurance

Risk averse individual:

I facing a loss X ≥ 0,

I utility function u(x),

I initial wealth w.

Risk averse insurer:

I accepts X for a premium P,

I utility function U,

I initial wealth W.

Under what conditions is an insurance contract feasible?

I From the viewpoint of the individual,

I from the viewpoint of the insurer.
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Expected utility and insurance

Viewpoint of the individual:
I He is only willing to underwrite the insurance if

u (w− P) ≥ E [u (w−X)] .

I There exists always a premium PM such that

u
(

w− PM
)
= E [u (w−X)] .

F u is non-decreasing.

F u is concave, hence also continuous.

F PM is the maximum premium the insured is willing to pay.

From Jensen’s inequality:

PM ≥ E [X] .

I Exericse: prove this inequality.
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Expected utility and insurance

Viewpoint of the insurer:

I He is willing to insure the risk X at a premium P if

U (W) ≤ E [U (W + P−X)] .

I Minimal premium Pm he requires follows from

U (W) = E [U (W + Pm −X)] .

I From Jensen’s inequality:

Pm ≥ E [X] .

F Exercise: prove this inequality.

Condition for an insurance contract to be feasible:

Pm ≤ P ≤ PM
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Expected utility and mutual exclusivity

Definition:

I The random vector (X1, X2, . . . , Xn) is said to be mutually exclusive if
the following conditions hold:

P
[
Xi 6= 0, Xj 6= 0

]
= 0, ∀i 6= j

Examples of mutual exclusive couples:

I Insurance with a franchise deductible:

ϕ (X) =

{
0 if X ≤ d
X otherwise

and X− ϕ (X) =

{
X if X ≤ d
0 otherwise

I Term insurance with doubled capital in case of accidental death.

I Endowment insurance.
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Expected utility and mutual exclusivity

Theorem (Additivity property of mutual exclusive losses)

Consider a utlity function u, satisfying u (w) = 0. If X and Y are mutual
exclusive losses, then

E [u(w−X− Y)] = E [u(w−X)] + E [u(w− Y)] .

A general utility function u can always be standardized such that
u (w) = 0.

Interpretation:

I The utility after bearing the loss X + Y is the sum of the individual
expected utilities.
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Introduction: ordering of risks

The perception of risk is captured in a utility function u:

u(x) = moral value of having a wealth equal to x.

A decision maker is assumed to be an expected utility maximizer:

I for a decision maker with utility function u, loss X is ‘more preferable’
than loss Y if:

E [u (w−X)] ≥ E [u (w− Y)] .

I there may exist another decision maker with utility function v, who
prefers Y over X.

The notion ‘more preferable’ depends on:

I the distribution of the risk itself;

I the risk preferences of a particular decision maker.
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The concept ’more preferable’

Equality in distribution:

I Two r.v.’s X and Y are said to be equal in distribution if:

FX (x) = FY (x) , for all x ∈ R.

I Notation: X d
= Y.

If X d
= Y, all decision makers will be indifferent between risk X and

risk Y.

If X
d
6= Y, the notion ‘more preferable’ should be based on the

distribution of the loss alone, not on a particular utility function.



3 – Integral stochastic orders 29/65

Definition

A decision maker’s utility function u is in general unknown.

Group all ‘reasonable’ decision makers in a class U .

u(−X) represents the utility of a decision maker with zero initial
wealth, after suffering the loss X.

Integral stochastic order based on the class U :

X �U Y⇔ E [u(−X)] ≥ E [u(−Y)] for all u ∈ U .

Interpretation:

I All decision makers with zero initial wealth and belonging to the class
U prefer the loss X over Y.
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Consider two losses X and Y, for which X �U Y.

Consider a decision maker with utility function u and initial wealth w.

I The decision maker prefers X over Y if

E [u(w−X)] ≥ E [u(w− Y)] . (1)

I X �U Y does not necessarily imply (1).

Assumption concerning U :

I Define the utility function v as: v(x) = u(w + x).

u ∈ U ⇒ v ∈ U .

Interpretation:

I The preference of X over Y does not depend on the initial wealth.
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Applications

Consider an insurer facing the risk X.

The cdf of X will in general be unknown or too cumbersome to work
with.

I The only information available is that X belongs to some class:

X ∈ A.

Picking a particular member of A will lead to model risk.

Making the wrong choice can lead to serious underestimation of the
real risk.
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Applications

Replace the loss X by Y, such that for every Z ∈ A3:

Z �U Y.

The r.v. Y describes a worst case scenario.

Calculating actuarial quantities for Y is a ‘prudent strategy’.

References:

I Exotic option pricing: Schoutens, Simons & Tistaert (2004).

I Risk measures: Barrieu & Scandolo (2013).

3For simplicity we assume that such Y exists.
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Losses versus gains

If X denotes a loss:

I high positive values are big losses;

I prefer loss X over Y if

E [u(w−X)] ≥ E [u(w− Y)] .

I −X is a r.v. representing gains.

If X denotes a gain:

I negative values are losses;

I prefer gain Y over X if

E [u(w + X)] ≤ E [u(w + Y)] .

I −X is a loss r.v.
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Definition (Stochastic dominance)

Two r.v.’s X and Y are ordered in the stochastic dominance sense,
notation X �st Y if

E [u(−X)] ≥ E [u(−Y)] ,

for all non-decreasing function u.

The class U is:

U = {u|u is a non-decreasing utility function}.

U is the class of all decision makers who prefer more over less wealth.

Interpretation:

I If X �st Y, all decision makers will prefer X over Y.

I Replacing loss X by loss Y is a prudent strategy.
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Losses versus gains

u(x) is non-decreasing⇔ −u(−x) is non-decreasing.

I For a non-decreasing utility function u, define the function v as

v(x) = −u(−x). (2)

I The function v is again a utility function in the class U .

Stochastic dominance in terms of gains:

X �st Y⇔ E [v(X)] ≤ E [v(Y)] ,

for v a non-decreasing utility function.

Interpretation:

I X �st Y means that a gain Y is more attractive than a gain X.
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Characterization in terms of the cdf

Characterization of stochastic dominance:

X �st Y⇔ FX(x) ≥ FY(x), for all x ∈ R.

Other characterization:

X �st Y⇔ P [X > x] ≤ P [Y > x] , for all x ∈ R.

Interpretation:
I For losses: prefer the risk which has the smallest upper tail and largest

lower tail.

I For gains: prefer the risk which has the largest upper tail and smallest
lower tail.

Smaller loss X is equivalent with a larger gain −X:

X �st Y⇔ −Y �st −X.
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Stochastic dominance and ordered means

The expected value E [X]:

E [X] = −
∫ 0

−∞
FX(x)dx +

∫ +∞

0
(1− FX(x)) dx.

Difference in means in terms of cdf’s:

E [Y]−E [X] =
∫ +∞

−∞
(FX(x)− FY(x)) dx.

I Exericse: Prove that this implication holds.

Stochastic dominance implies ordered means:

X �st Y⇒ E [X] ≤ E [Y] .

I Exericse: Prove that this implication holds.
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Capturing a distribution in a real number

Theorem

Consider two r.v.’s X and Y. Then the following statements are equivalent:

1
X �st Y and E [X] = E [Y] .

2
X d
= Y

Proof: Good exercise to try at home.

Interpretation:

I Consider two losses X and Y with X �st Y.

I Then, the mean is sufficient to characterize the losses.

I If E [X] = E [Y], any decision maker will be indifferent between the
losses X and Y.
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Definition

Definition (Stop-loss order)

Two r.v.’s X and Y are ordered in the stop-loss order sense, notation
X �sl Y if

E [u(−X)] ≥ E [u(−Y)] ,

for all non-decreasing and concave functions u.

The class U is:

U = {u|u is a non-decreasing and concave utility function}.

U is the class of all risk-averse decision makers.

Interpretation:

I If X �sl Y, all risk-averse decision makers will prefer X over Y.

I Replacing loss X by loss Y is a prudent strategy.
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Losses versus gains

Relating convex and concave functions:

I The following statements are equivalent:

F u(x) is non-decreasing and concave,

F v(x) = −u(−x) is non-decreasing and convex.

Alternative definition for stop-loss order:

I X �sl Y if, and only if,

E [v(X)] ≤ E [v(Y)] ,

for all non-decreasing convex functions v.

I v is not a utility function of a risk-averse decision maker.

I Stop-loss order has no interpretation in terms of gains when
considering risk-averse decision makers.
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Example: Reinsurance

Reinsurance:

I Total risk of an insurer = X.

I The insurer moves the biggest losses to the reinsurer.

F Insurer pays the losses below K:

Payments of Insurer =

{
X, if X ≤ K
K, if X > K .

F The reinsurer starts paying when the losses exceed the threshold K:

Payments of Reinsurer =

{
0, if X ≤ K
X− K, if X > K

notation
= (X− K)+

Expected payment of the reinsurer: E
[
(X− K)+

]
.

I E
[
(X− K)+

]
gives information about the big losses, which have to be

paid by the reinsurer.



5 – Stop-loss premium 42/65

Example: Call option

X denotes the price of a stock (e.g. Apple) at some future date T
(e.g. one year).

Call option
I A call option with strike K and maturity T gives the buyer the right to

buy the stock at time T for the price K.

I The buyer will benefit from this product when the stock price increases.

At maturity, the buyer will receive a pay-off equal to:

Pay-off at maturity =

{
0, if X ≤ K
X− K, if X > K

notation
= (X− K)+ .

The expected pay-off is given by:

E
[
(X− K)+

]
.
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Definition

The stop-loss premium of the r.v. X with retention K is given by

E
[
(X− K)+

]
.

It can be proven that:

E
[
(X− K)+

]
=
∫ +∞

K
(1− FX (x)) dx.

Interpretation:

I Upper tail at level K.

I E
[
(X− K)+

]
is the surface between the cdf FX and the constant

function 1, from K to +∞.
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Measures for the upper tail

Stop-loss transform:

I πX(x) = E
[
(X− x)+

]
.

I πX is strictly decreasing and convex.

The stop-loss transform characterizes the distribution of X:

π′X(x+) = FX(x)− 1,

for x ∈ R.
I π′X(x+) is the right derivative of the function πX in the point x.

Alternative definition for stop-loss order:

I X �sl Y⇔ E
[
(X− K)+

]
≤ E

[
(Y− K)+

]
, for all K ∈ R.

I X �sl Y means that X has uniformly smaller upper tails than Y.
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Theorem (Crossing condition for stop-loss order)

If for two r.v.’s, there is a real number c such that

FX(x) ≤ FY(x), for all x < c,
FX(x) ≥ FY(x), for all x ≥ c,

and if also E [X] ≤ E [Y], then

X �sl Y.

Exercise: Give a graphical proof of this Theorem.
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Definition

Definition (Second degree stochastic dominance)

Two r.v.’s X and Y are ordered in the Second degree stochastic dominance
sense, notation X �sst Y, if

E [u(X)] ≤ E [u(Y)] ,

for all non-decreasing and concave functions u.

The class U is:

U = {u|u is a non-decreasing and concave utility function}.

U is the class of all risk-averse decision makers.

Interpretation:

I If X �sl Y, all risk-averse decision makers will prefer gain Y over X.
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Example: Put option

X denotes the price of a stock (e.g. Apple) at some future date T
(e.g. one year).

Put Option
I A put option with strike K and maturity T gives the buyer the right to

sell the stock at time T for the price K.

I The buyer will benefit from this product when the stock price decreases.

At maturity, the buyer will receive a pay-off equal to:

Pay-off at maturity =

{
K−X, if X ≤ K
0, if X > K .

notation
= (K−X)+

The expected pay-off is given by:

E
[
(K−X)+

]
.
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Measure the lower tail using E
[
(K−X)+

]
.

It can be proven that:

E
[
(K−X)+

]
=
∫ K

−∞
FX (x) dx.

Interpretation:

I Lower tail at level K.

lower tail transform:

I λX (x) = E
[
(x−X)+

]
I A distribution is characterized by its lower tail transform:

λ′X (x+) = FX (x) .
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Losses versus gains

2nd degree stochastic dominance has no interpretation in terms of
losses for risk-averse decision makers.

Stop-loss and 2nd degree stochastic dominance:

X �sst Y⇔ −Y �sl −X

Alternative definition:

X �sst Y⇔ E
[
(K−X)+

]
≥ E

[
(K− Y)+

]
, for all K ∈ R.

Interpretation:

I The larger the lower tails of a gain, the less attractive this gain has to
be considered.
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Definition (Crossing condition for sst-order)

If for two r.v.’s, there is a real number c such that

FX(x) ≥ FY(x), for all x < c,
FX(x) ≤ FY(x), for all x ≥ c,

and if also E [X] ≤ E [Y], then

X �sst Y.

Exercise: Give a graphical proof of this Theorem.
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Definition

Definition (Convex order)

Two r.v.’s X and Y are ordered in the convex order sense, notation
X �cx Y if

E [X] = E [Y] and E [u(−X)] ≥ E [u(−Y)] ,

for all non-decreasing and concave functions u.

U is the class of all risk-averse decision makers.

Convex order gives the preferences of risk-averse decision makers
between losses with the same mean.

Interpretation:

I A loss X is replaced by a less attractive r.v. Y, ‘which is the same on
average’.
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Connection between upper and lower tail:

E
[
(X− K)+

]
= E

[
(K−X)+

]
+ E [X]− K.

This expression is called the put-call parity and has (in a modified
form) wide applications in option pricing theory.

The put-call parity can be proven in a graphical way, using the
following expressions:

E [X] = −
∫ 0

−∞
FX(x)dx +

∫ +∞

0
(1− FX(x)) dx,

E
[
(X− K)+

]
=

∫ +∞

K
(1− FX (x)) dx,

E
[
(K−X)+

]
=

∫ K

−∞
FX (x) dx.
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Ordered upper and lower tails

Convex order and stop-loss order:

X �cx Y⇔ E [X] = E [Y] and X �sl Y

Convex order and upper tail transform:

X �cx Y⇔
{

E [X] = E [Y] ,
E
[
(X− K)+

]
≤ E

[
(Y− K)+

]
, for all K,

I Follows directly from the definition of stop-loss order.

Convex order and lower tail transform:

X �cx Y⇔
{

E [X] = E [Y] ,
E
[
(K−X)+

]
≤ E

[
(K− Y)+

]
, for all K,

I Follows directly from the put-call parity.
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Ordered upper and lower tails

Convex order and second degree stochastic dominance:

X �cx Y⇔ E [X] = E [Y] and Y �sst X

I Follows directly from the definition of 2nd degree stochastic order.

Convex order and lower and upper tail transforms:

X �cx Y ⇔
{

X �sl Y,
Y �sst X, ,

⇔
{

E
[
(X− K)+

]
≤ E

[
(Y− K)+

]
, for all K,

E
[
(K−X)+

]
≤ E

[
(K− Y)+

]
, for all K,

I The proof of ⇒ follows from previous relations.
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Comparing variability of risks

Convex order and convex/concave functions:

X �cx Y⇔ E [u(X)] ≤ E [u(Y)] ,

for all convex functions u.

X �cx Y implies

I Y has heavier upper tails than X,

I Y has heavier lower tails than X.

Convex order has an interpretation in terms of losses and gains.

X �cx Y⇔ −X �cx −Y.

R.v. X is ‘less variable’ than r.v. Y.
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Theorem

If for two r.v.’s X and Y a real number c exists such that

FX(x) ≤ FY(x) for all x < c,
FX(x) ≥ FY(x) for x ≥ c, (3)

and moreover E [X] = E [Y], then X �cx Y.

Exercise:
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Lemma

For any a ∈ R, u (X) can be expressed as

u (X) = u (a) + u′ (a) (X− a) +
∫ a

−∞
u′′ (K) (K−X)+ dK (4)

+
∫ +∞

a
u′′ (K) (X− K)+ dK.

At a certain time, one has to pay the amount u (X) .

The pay-off u (X) can be decomposed using:

I pay-off of call options: (X− K)+ ,

I pay-off of put options: (K−X)+ .

Pay-offs of the form (X− K)+ and (K−X)+ are the building blocks
for more complex pay-offs.

4see Carr & Madan (2001) and Cheung, Dhaene, Kukush & Linders (2013)
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Lemma

For a r.v. X, we can decompose E [u (X)] as

E [u (X)] =u (E [X]) +
∫ E[X]

−∞
u′′ (K)E

[
(K−X)+

]
dK

+
∫ +∞

E[X]
u′′ (K)E

[
(X− K)+

]
dK.

For a risk-averse decision maker, the expected utility E [u (X)] can be
written as

the utility of E[X] + portion of the tails.

If u′′(x) ≤ 0, we immediately find Jensen’s inequality:

E [u (X)] ≤ u (E [X]) .
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Example: Variance

Variance decomposition formula

I Take u (x) = (x−E [X])2, then:

1
2

Var[X] =
∫ E[X]

−∞
E
[
(K−X)+

]
dK +

∫ +∞

E[X]
E
[
(X− K)+

]
dK.

Graphical representation:
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Capturing a distribution in a real number

Convex ordered r.v.’s:

I We can prove that X �cx Y, then∫ ∞

−∞

(
E
[
(Y− K)+

]
−E

[
(X− K)+

])
dK =

1
2
(Var [Y]− Var [X]) .

I Comparing variances is meaningful when comparing SL-premiums of
convex ordered r.v.’s.

I If X �cx Y, then Var[X] ≤Var[Y] .

The following statements are equivalent:

I X �cx Y and Var[Y] = Var[X]

I X d
= Y.
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Theorem

Consider the r.v.’s X and Y. Let u be a strictly concave function such that
E [u (Y)] is finite.
Then

X �cx Y and E [u (X)] = E [u (Y)] (5)

is equivalent with

X d
= Y. (6)

The function u has to have an absolutely continuous derivative to
ensure all integrals are well-defined.

The results hold for concave/convex twice differentiable utility
functions.

The condition E [u (X)] = E [u (Y)] can be replaced by
E [u (−X)] = E [u (−Y)].
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Consider a decision maker with a strictly concave and twice
differentiable utility function:

u′′(x) < 0.

He has to choose between two convex ordered gains:

X �cx Y.

The decision maker values X using the whole distribution.

If he prefers X over Y:

E [u (X)] > E [u (Y)] ,

then X and Y cannot be equal (in distribution).

If he is indifferent between X and Y, any other decision maker will be
indifferent.
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