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1 — Introduction

Examples of decision making problems:

» Individual: bear a risk or insure it (partially)?
> Insurer: accept a risk or not?

» Insurer: reinsure (part of) the accepted risks?

Optimal choice of the decision maker depends on:

> his initial wealth,

> his risk appetite.

Theories of choice under risk:

» Expected utility theory: Cramer (1728), Bernouilli 1738), Von
Neumann & Morgenstern (1947).

» Dual theory of choice under risk: Yaari (1987), Roéll (1987),
Schmeidler (1989).

Common properties of these theories:

» Preference relations of a decision maker are qualitative in nature,

> but follow from comparing numerical quantities.
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1 — The St. Petersburg Paradox 4/65

@ Problem:

» A fair coin is tossed repeatedly until it lands head up. The income you
receive is equal to 2" if the first head appears on the n-th toss. How
much are you willing to pay for this game?

o Expected gain:
» Assume that the coin is fair.
» Probability to win the amount 2" is zl"
» The expected gain:
+o0 " 1 o0
n;(z )x27=n21=+oo.
o Conclusions:
» A decision maker will not pay +co.
» The price to play this game will be modest.

» The expectation is not (always) a good method to value a game.
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Expected utility theory

o Classical expected utility theory:

» Each decision maker assigns a utility u(x) to any fortune of amount x.
» Utility functions are of a subjective nature.

» ‘Reasonable’ utility functions share common properties:

* non-decreasingness,

* decreasing marginal utility.

@ Expected utility and insurance:

» Why is an individual willing to pay a premium larger than the average
expected loss?

» Why are certain insurance covers to be preferred over others?
» Behavior of insureds:
* moral hazard,

* anti-selection.
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Solution of G. Cramer (1728) and D. Bernoulli (1738)

@ Consider a decision maker with initial fortune w.

o He attaches a utility u(x) to a fortune x.

The price to play the game is P.

@ Assume our agent wins after n throws:

» His utility if he wins after n throws: u (w — P +2").

» Probability to win after n throws: 2%

Expected utility:
» At initiation, the utility he will reach if he plays the game is unknown.

» Expected utility:

+o00 " 1
u(w—P+2 )—zn.
n=1



1 — The St. Petersburg paradox
Solution of G. Cramer (1728) and D. Bernoulli (1738)

@ The decision maker is an expected utility maximizer.
o If he doesn't play the game, his utility is u(w).

@ He is willing to play the coin tossing game for a price P if

+o0 1
u(w) < Zlu(w—P+2”)2—n
n=

> G. Cramer: u(x) = /x.
» D. Bernoulli: u(x) = Inx.
o Example:
» Take w = 10000 and u(x) = Inx.
» Then P = 14.2385. (Check this using MatLab or Excel!)
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1 — The concept ‘risk’ 9/65
Potential gains/losses
@ A risk is an event solely due to the whims of fate that may or may

not take place
» and that brings about some financial loss,

» or a financial gain.

@ Examples:
» For an insurer, a risk is a potential loss (e.g. car insurance);

» For an investor, a risk is a potential gain (e.g. investment).

@ A risk always contains uncertainty:

» The event that may or may not take place,
» or the severity of the consequences of its occurence,
» or the moment of its occurrence.
@ Risk vs. loss:
» ‘Risk’ and ‘loss’ are synonyms.

@ Risks are modeled by random variables.
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R.v.’s defined on a probability space
@ Consider a random experiment, defined on the probability space
(Q,F,P):
» () : set with all possible outcomes;
» F subsets of (), called events;

» IP : probability measure:
IP [A] = probability that the realization lies in the set A € F

@ Definition:

» A random variable X defined on (Q), F,IP) is a function which attaches
a real number to each possible outcome:

X: 00— R.

» w describes the state of a random phenomenon.

» X(w) is a single aspect of the state w.
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@ Question: What is the probability that X(w) lies in the interval B?

» Probability function IP assigns probabilities to subsets of ().
> The set X~ 1(B)?%:
X(B) = {w|X(w) € B}

> P [X~1(B)] = probability that X takes a value in B.
» Notation:
P[X € B =P [X‘l(B)} .
@ We assume that the probability P[X € B] is known.

@ The only uncertainty when considering a future random loss is the
uncertainty about its particular future outcome, not the uncertainty
about its ‘distribution’.

2we silently assumed that X is a measurable function.
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cdf of a random variable

o Cumulative distribution function (cdf) Fx of the r.v. X :

Fx(x) =P[X <x], forx € R.

» Fx is non-decreasing and right continuous.
@ Assume Fy is constant on [g, b].
» Probability of ending in (a,b] is zero.
o Assume Fx has a jump of size A (x) in x:
> A(x) = Fx (x) = Fx (x—).
» A (x) is zero if Fx is continuous in x.

» Forallx e R:



1 — Expected value 13/65

Expectation as a Riemann-Stieltjes integral

@ The average or expected value of X is denoted by E [X] :

E[X] = / ™ Py (x).

—o0

o If Fx has only a discrete part:

E[X] =) yA(y) =) yP[X=y].
Y Yy

@ If Fx has a discrete and continuous part:

E[X] = /;w xfx (x)dx+ Y yA (y).
Yy

> fx (x)dx = probability that X takes a value in the [x,x + dx].

o Exercise:

» Consider a r.v. X which takes the value 0 or 1 with equal probability.
Determine the cdf Fx and E [X].
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Utility functions

Definition (Utility function)
A utility function u is a real-valued non-decreasing function asserting a
decision maker’s utility-of-wealth 1(x) to each possible level of wealth x.

@ Decision makers have non-negative marginal utility: more wealth is
always preferred over less wealth.

o In general, different decision makers will have different utility
functions.

@ We study classes of decision makers, which all share some common
risk preferences
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Expected utility

@ Consider a decision maker having initial wealth w and facing a loss X.

@ Wealth after suffering the loss X :
w—X.
o Utility level after suffering the loss X
u(w—X).
» u(w—X)isar.v.
@ The expected utility is the quantity:

E [u(w — X)].
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Profit-seeking decision makers

@ The expected utility hypothesis:

),

Prefer loss X over loss Y <= E [u(w — X)] > E [u(
=E Y)].

w J—
Indifferent between X and ¥ <= E [u(w — X)] [u(w —
» Relations as above hold ‘provided the expectations exist’.

» The decision maker is said to be an expected utility maximizer.

> Indifferent between losses with the same distribution.

o Standardized utility functions:

> A utility function only needs to be determined up to positive linear
transformations.

* Exercise: prove this statement!

» Standardize the utility function u:

u(xp) =0 and v (xg) = 1,for some xp € R.
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Transformed wealth levels

@ Axiomatic framework - Von Neumann & Morgenstern (1947):

» Any decision maker whose behavior is in accordance with a given set of
‘rational’ axioms, is an expected utility maximizer.

@ The ‘independence axiom':

» For any random losses X, Y and Z and for any Bernoulli r.v. I,
independent of X, Y and Z, one has:

Prefer loss X over loss Y
= Prefer loss IX + (1 —I)Z over loss [Y + (1 —I)Z

» Example.
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Expected utility and risk aversion

Definition (concave function)

A real-valued function f, defined on the interval I C R, is concave on [ if
for any x1, xp € I and any t € [0, 1],

St + (L= t)xp) > f (1) + (1 = £)f (x2)

o f is convex on the interval I if (—f) is concave on I.

@ Assume f is twice differentiable:
> fis concave < " (x) <0, for all x € L.
» fis convex < f (x) >0, for all x € .

@ f is concave = f is continuous.
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Definition (Risk averse decision makers)

A decision maker is risk averse if his utility function u is concave on its
domain.

@ Risk averse decision makers have decreasing marginal utility.
» Assume you gain the amount A.
> Increase in utility: u(x +A) —u(x).

» For risk averse decision makers, the increase in utility is a decreasing
function of the wealth level x.

@ Interpretation:

» As more wealth is available, less ‘moral value’ is placed on earning an
additional Euro.
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Expected utility and risk aversion

Theorem (Jensen’s inequality (1906))

fis concave = E[f(Y)] <f (E[Y])

o Corollary: If u is a concave utility function, then

Eu(w—X)] <u(w—-EX]).

» Exercise: prove this inequality.

@ The risk averse decision maker's attitude towards risk:

» Prefer certainty over uncertainty with the same expectation.

@ The risk averse decision maker's attitude towards wealth:

» Decreasing marginal utility.
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Expected utility and risk aversion

@ Definition:
A decision maker is risk neutral if

u(x) =ax+b

for given constants a > 0 and b.

@ In this case, the expected utility hypothesis coincides with comparing
expected values.

@ The Arrow-Pratt measure of absolute risk aversion:

For any risk averse decision maker, we have that r > 0.
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Expected utility and insurance

@ Risk averse individual:

» facing a loss X > 0,
» utility function u(x),
> initial wealth w.

@ Risk averse insurer:

» accepts X for a premium P,
» utility function U,
> initial wealth W.

@ Under what conditions is an insurance contract feasible?

» From the viewpoint of the individual,

» from the viewpoint of the insurer.
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Expected utility and insurance

@ Viewpoint of the individual:

» He is only willing to underwrite the insurance if

u(w—P)>E[u(w-—X).

» There exists always a premium PM such that
u(w—P") = E[u(w-X)].

* u is non-decreasing.
* u is concave, hence also continuous.

* PM s the maximum premium the insured is willing to pay.

@ From Jensen's inequality:
PM > E[X].

» Exericse: prove this inequality.
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Expected utility and insurance

@ Viewpoint of the insurer:

» He is willing to insure the risk X at a premium P if

U(W) <E[U(W+P—X).

» Minimal premium P™ he requires follows from
UW)=E[UW+P"-X)].
» From Jensen's inequality:

P" > E[X].

* Exercise: prove this inequality.

@ Condition for an insurance contract to be feasible:

pr<p<pM
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Expected utility and mutual exclusivity

@ Definition:

» The random vector (X1, Xp, ..., Xy) is said to be mutually exclusive if
the following conditions hold:

P[X;#0,X;#0| =0, Vi#j

@ Examples of mutual exclusive couples:

» Insurance with a franchise deductible:

0if X<d ] XifX<d
(X)) = { X otherwise and X — ¢ (X) = { 0 otherwise

» Term insurance with doubled capital in case of accidental death.

» Endowment insurance.
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Expected utility and mutual exclusivity

Theorem (Additivity property of mutual exclusive losses)

Consider a utlity function u, satisfying u (w) = 0. If X and Y are mutual
exclusive losses, then

Eu(w—X-Y)]=E[u(w—X)]+E [u(w-Y)].

@ A general utility function u can always be standardized such that
u(w) = 0.
@ Interpretation:

» The utility after bearing the loss X + Y is the sum of the individual
expected utilities.
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Introduction: ordering of risks

@ The perception of risk is captured in a utility function u:

u(x) = moral value of having a wealth equal to x.

@ A decision maker is assumed to be an expected utility maximizer:

» for a decision maker with utility function u, loss X is ‘more preferable’
than loss Y if:

Eu(w—X)| >E[u(w-Y)].

» there may exist another decision maker with utility function v, who
prefers Y over X.

@ The notion ‘more preferable’ depends on:

» the distribution of the risk itself;

» the risk preferences of a particular decision maker.
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The concept 'more preferable’

e Equality in distribution:

» Two r.v.'s X and Y are said to be equal in distribution if:

Fx (x) = Fy (x), forall x € R.

» Notation: X 2 Y.

o If X 4 Y, all decision makers will be indifferent between risk X and
risk Y.

d
o If X # Y, the notion ‘more preferable’ should be based on the
distribution of the loss alone, not on a particular utility function.
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Definition

@ A decision maker's utility function u is in general unknown.

Group all ‘reasonable’ decision makers in a class U.

u(—X) represents the utility of a decision maker with zero initial
wealth, after suffering the loss X.

Integral stochastic order based on the class U:

X=uY<E[u(-X)] >E[u(-Y)| foraluecl.

Interpretation:

» All decision makers with zero initial wealth and belonging to the class
U prefer the loss X over Y.
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Consider two losses X and Y, for which X <;; Y.

Consider a decision maker with utility function u and initial wealth w.

» The decision maker prefers X over Y if
E[u(w—X)] > E [u(w—Y)]. (1)

» X <y Y does not necessarily imply (1).

Assumption concerning U:

» Define the utility function v as: v(x) = u(w + x).

ueld=vel.

Interpretation:

» The preference of X over Y does not depend on the initial wealth.
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Applications

@ Consider an insurer facing the risk X.

@ The cdf of X will in general be unknown or too cumbersome to work
with.

» The only information available is that X belongs to some class:
Xe A

@ Picking a particular member of A will lead to model risk.

@ Making the wrong choice can lead to serious underestimation of the
real risk.
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Applications

Replace the loss X by Y, such that for every Z € A3:
Z=2yY.

The r.v. Y describes a worst case scenario.

Calculating actuarial quantities for Y is a ‘prudent strategy’.
@ References:

» Exotic option pricing: Schoutens, Simons & Tistaert (2004).
» Risk measures: Barrieu & Scandolo (2013).

3For simplicity we assume that such Y exists.
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Losses versus gains

o If X denotes a loss:

> high positive values are big losses;

» prefer loss X over Y if
E[u(w—X)] >Eu(w-Y)].
» —X is a r.v. representing gains.

o If X denotes a gain:

> negative values are losses;

> prefer gain Y over X if
E[u(w+X)] < E [u(w+ ).

» —X is a loss r.v.
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Definition (Stochastic dominance)

Two r.v.’s X and Y are ordered in the stochastic dominance sense,
notation X <4 Y if

Eu(=X)] > E[u(=Y)],

for all non-decreasing function .

@ The class U is:
U = {u|u is a non-decreasing utility function}.

@ U is the class of all decision makers who prefer more over less wealth.
@ Interpretation:
» If X <4 Y, all decision makers will prefer X over Y.

» Replacing loss X by loss Y is a prudent strategy.
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Losses versus gains

@ u(x) is non-decreasing < —u(—x) is non-decreasing.
» For a non-decreasing utility function u, define the function v as
o(x) = —u(—x). (2)
» The function v is again a utility function in the class U.

@ Stochastic dominance in terms of gains:
X =2+Y< E[vX)] <E[v(Y)],

for v a non-decreasing utility function.

@ Interpretation:

» X <4 Y means that a gain Y is more attractive than a gain X.
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Characterization in terms of the cdf
@ Characterization of stochastic dominance:

X <4 Y & Fx(x) > Fy(x), forallx € R.

@ Other characterization:

X34 YePX>x]<P[Y>x, forallxeR.

@ Interpretation:

» For losses: prefer the risk which has the smallest upper tail and largest
lower tail.

» For gains: prefer the risk which has the largest upper tail and smallest
lower tail.

@ Smaller loss X is equivalent with a larger gain —X:

X jst Y& Y jst -X.
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Stochastic dominance and ordered means

@ The expected value E [X]:

E[X] = —/OmFX(x)dx+/()+oo (1 — Fx(x)) dx.

@ Difference in means in terms of cdf’s:

—+o0

BN -EX = [ (Fx(¥) ~ Fy(x) d

» Exericse: Prove that this implication holds.

@ Stochastic dominance implies ordered means:
X=+Y=E[X]<EJY].

» Exericse: Prove that this implication holds.
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Capturing a distribution in a real number

Theorem

Consider two r.v.'s X and Y. Then the following statements are equivalent:
1

X=<4Y and E[X]=E[Y].

d

X=Y

@ Proof: Good exercise to try at home.
@ Interpretation:
» Consider two losses X and Y with X <4 Y.
» Then, the mean is sufficient to characterize the losses.

» If E [X] = E[Y], any decision maker will be indifferent between the
losses X and Y.
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Definition

Definition (Stop-loss order)

Two r.v.'s X and Y are ordered in the stop-loss order sense, notation
X=2g Yif

Eu(=X)] > E[u(=Y)],

for all non-decreasing and concave functions u.

@ The class U is:
U = {u|u is a non-decreasing and concave utility function}.

@ U is the class of all risk-averse decision makers.

@ Interpretation:

» If X =4 Y, all risk-averse decision makers will prefer X over Y.

» Replacing loss X by loss Y is a prudent strategy.
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Losses versus gains

@ Relating convex and concave functions:

» The following statements are equivalent:

* u(x) is non-decreasing and concave,
* v(x) = —u(—x) is non-decreasing and convex.
@ Alternative definition for stop-loss order:
» X =<4 Y if, and only if,

E [v(X)] <E[o(Y)],
for all non-decreasing convex functions v.

» v is not a utility function of a risk-averse decision maker.

» Stop-loss order has no interpretation in terms of gains when
considering risk-averse decision makers.
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Example: Reinsurance

@ Reinsurance:
» Total risk of an insurer = X.
» The insurer moves the biggest losses to the reinsurer.
* Insurer pays the losses below K:

X, ifX<K

Payments of Insurer = { K fX>K.

* The reinsurer starts paying when the losses exceed the threshold K:

0, if X <K
X—-K, ifX>K

nota:tion (X _ K)+

Payments of Reinsurer = {

o Expected payment of the reinsurer: E [(X —K),].

» E [(X —K)_ ] gives information about the big losses, which have to be
paid by the reinsurer.
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Example: Call option
@ X denotes the price of a stock (e.g. Apple) at some future date T
(e.g. one year).

o Call option

> A call option with strike K and maturity T gives the buyer the right to
buy the stock at time T for the price K.

» The buyer will benefit from this product when the stock price increases.
@ At maturity, the buyer will receive a pay-off equal to:

0, if X <K

Pay-off at maturity = { X_K ifX>K

nota:tion (X . K>+ .

@ The expected pay-off is given by:
E [(X — K)+] .
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Definition

The stop-loss premium of the r.v. X with retention K is given by

E[(X—-K),].
@ It can be proven that:
+o0
E[(X-K),]= [ (-Fx(x)dr

@ Interpretation:
» Upper tail at level K.

» E [(X —K), | is the surface between the cdf Fx and the constant
function 1, from K to +oo.



E[(X-K),]
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Measures for the upper tail

@ Stop-loss transform:

> x(x) =E[(X—x),].

» 7Ty is strictly decreasing and convex.

@ The stop-loss transform characterizes the distribution of X:
mx(x+) = Fx(x) - 1,

for x € R.
» 7% (x+) is the right derivative of the function 7ty in the point x.
@ Alternative definition for stop-loss order:

» X=9YSE[(X-K),] <E[(Y-K),], forall K€ R.

» X =4 Y means that X has uniformly smaller upper tails than Y.
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Theorem (Crossing condition for stop-loss order)

If for two r.v.’s, there is a real number ¢ such that

Fx(x) < Fy(x), forallx<c,
Fx(x) > Fy(x), forallx>c,

and if also E [X] < E[Y], then

X =2gY.

o Exercise: Give a graphical proof of this Theorem.
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Definition

Definition (Second degree stochastic dominance)

Two r.v.'s X and Y are ordered in the Second degree stochastic dominance
sense, notation X <4 Y, if

E[u(X)] <E[u(Y)],

for all non-decreasing and concave functions u.

@ The class U is:
U = {u|u is a non-decreasing and concave utility function}.

@ U is the class of all risk-averse decision makers.

@ Interpretation:

» If X <4 Y, all risk-averse decision makers will prefer gain Y over X.
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Example: Put option
@ X denotes the price of a stock (e.g. Apple) at some future date T
(e.g. one year).
@ Put Option

> A put option with strike K and maturity T gives the buyer the right to
sell the stock at time T for the price K.

» The buyer will benefit from this product when the stock price decreases.
@ At maturity, the buyer will receive a pay-off equal to:

K-X, ifX<K

Pay-off at maturity = { 0 XS K

nota:tion (K . X)+

@ The expected pay-off is given by:
E [(K — X)+] .
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Measure the lower tail using E [(K—X)., ].

It can be proven that:

Interpretation:

» Lower tail at level K.
@ lower tail transform:
» Ax (x) = E[(x—X), ]

» A distribution is characterized by its lower tail transform:

Ny (x) = Fx ().



E[(K-X), ]

K
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Losses versus gains

@ 2nd degree stochastic dominance has no interpretation in terms of
losses for risk-averse decision makers.

@ Stop-loss and 2nd degree stochastic dominance:

X jsst Y& —Y jsl —-X

@ Alternative definition:

X< YSE[K-X),]>E[(K-Y),], forall K€R.

@ Interpretation:

» The larger the lower tails of a gain, the less attractive this gain has to
be considered.
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Definition (Crossing condition for sst-order)

52/65

If for two r.v.’s, there is a real number ¢ such that

Fy(x), forallx <c,
Fy(x), forallx>¢,

™
=
R &
IN IV

and if also E [X] < E[Y], then

X jsst Y.

o Exercise: Give a graphical proof of this Theorem.
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Definition

Definition (Convex order)

Two r.v.'s X and Y are ordered in the convex order sense, notation
X jcx Y if

E[X]=E[Y] and E[u(-X)]>E[u(-Y)],

for all non-decreasing and concave functions u.

@ U is the class of all risk-averse decision makers.

@ Convex order gives the preferences of risk-averse decision makers
between losses with the same mean.
@ Interpretation:

» A loss X is replaced by a less attractive r.v. Y, ‘which is the same on
average’.
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@ Connection between upper and lower tail:

E[(X-K).] =E[(K-X),] +E[X] - K.

@ This expression is called the put-call parity and has (in a modified
form) wide applications in option pricing theory.

@ The put-call parity can be proven in a graphical way, using the
following expressions:

E[x] — OFX dx+/+wl—FX )) dx,
E[(X-K),] - /K+°°<1—Fx X)) dr,
E[K-X),] = [ Fx@

—00
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Ordered upper and lower tails

@ Convex order and stop-loss order:

X< YSEX]=E[Y] and X=<g4Y

@ Convex order and upper tail transform:

E[X] =E[Y],

chxY<:>{ IE[(X—K)+] S]E[(Y—K)+], for all K,

» Follows directly from the definition of stop-loss order.

@ Convex order and lower tail transform:

E[X] = E[Y],

chxY@{ E[(K-X),] <E[(K-Y),], forallK,

» Follows directly from the put-call parity.
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Ordered upper and lower tails

@ Convex order and second degree stochastic dominance:

X< YSEX]=E[Y] and Y =X

» Follows directly from the definition of 2nd degree stochastic order.

@ Convex order and lower and upper tail transforms:

X=ZaY & {ﬁf;g
E[X-K) | <E[(Y-K)_], forallK,
< {EKK—Xh]gEKK—YhL for all K,

» The proof of = follows from previous relations.
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Comparing variability of risks

o Convex order and convex/concave functions:

X2 Y < EuX)] <Eu(Y)],

for all convex functions u.
o X = Y implies
» Y has heavier upper tails than X,

» Y has heavier lower tails than X.

@ Convex order has an interpretation in terms of losses and gains.

X2 Y& —X =2 Y.

@ R.v. X is ‘less variable’ than r.v. Y.
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Theorem

If for two r.v.'s X and Y a real number ¢ exists such that

Fx(x) < Fy(x) for all x < c,
Fx(x) > Fy(x) forx >c, (3)

and moreover E [X] = E[Y], then X < Y.

o Exercise:
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Lemma

For any a € R, u (X) can be expressed as
u(X) =u(a)+u (a) (X—a +/ (K-X), dK  (4)

+/+°° K) (X —K), dK.

o At a certain time, one has to pay the amount u (X).
@ The pay-off u (X) can be decomposed using:

> pay-off of call options: (X —K)

> pay-off of put options: (K—X)_

o Pay-offs of the form (X —K), and (K — X)_ are the building blocks
for more complex pay-offs.

4see Carr & Madan (2001) and Cheung, Dhaene, Kukush & Linders (2013)
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Lemma

For a r.v. X, we can decompose E [u (X)] as
E[X]
]Hu@ﬂ:MEBD+/; u" (K)E [(K - X),] dK

—+o0
+ému(©EﬁX—MJdK

v,

@ For a risk-averse decision maker, the expected utility [E [1 (X)] can be
written as
the utility of IE[X] + portion of the tails.

o If u”(x) <0, we immediately find Jensen's inequality:

Efu(X)] <u(E[X]).
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Example: Variance

@ Variance decomposition formula
» Take u (x) = (x—E [X])Z, then:

b S
%Var[X] _ /_IZX E[(K-X),] dK+/]EJ[rX] E[(X—K),]dK.

@ Graphical representation:

A
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Capturing a distribution in a real number

o Convex ordered r.v.'s:

» We can prove that X <. Y, then

[ B[y =K),] B [(X = K),]) &K = 5 (Var[Y] - Var [X]).

—00

» Comparing variances is meaningful when comparing SL-premiums of
convex ordered r.v.'s.

» If X < Y, then Var[X] <Var[Y].
@ The following statements are equivalent:
» X =ex Y and Var[Y] = Var[X]

- xdy.
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Theorem

Consider the r.v.’s X and Y. Let u be a strictly concave function such that
E [u(Y)] is finite.
Then

X =< Yand E[u(X)] =E/u(Y)] (5)

is equivalent with

d

x<y. (6)

@ The function u has to have an absolutely continuous derivative to
ensure all integrals are well-defined.

@ The results hold for concave/convex twice differentiable utility
functions.

@ The condition ]E[ (X)]

= E[u(Y)] can be replaced by
Efu(=X)] = E[u(=Y)].
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Consider a decision maker with a strictly concave and twice
differentiable utility function:

u”(x) <0.

@ He has to choose between two convex ordered gains:

X = Y.

The decision maker values X using the whole distribution.

o If he prefers X over Y:
E[u(X)] > E[u(Y)],

then X and Y cannot be equal (in distribution).

If he is indifferent between X and Y, any other decision maker will be
indifferent.
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