Chapter 5: Yaari’s Dual Theory

Jan Dhaene & Daniël Linders

November, 2019
1. Distorted expectations

2. Distorted expectations

3. Discrete and continuous distortion functions

4. Dual theory of choice under risk
 Insurance
1 – Introduction

The problem of choosing between risks

- Setting: A decision maker can choose between two (random) losses: \(X \) and \(Y \).

- Question: What is the ‘optimal’ choice?

- Naive approach: Compare the expectations:

 \[
 \text{Prefer loss } X \text{ over } Y \iff \mathbb{E}[X] \leq \mathbb{E}[Y].
 \]
The problem of choosing between risks

- **Remark 1:** What if $E[X] = E[Y]$?
 - Is the decision maker indifferent?
 - even if X and Y are behaving very differently?

- **Remark 2:** The devil is in the tails!
 - Decision makers are assumed to be risk-averse.
 - The main concern is to *avoid (extreme) losses.*
The problem of choosing between risks

The most important insight from Chapter 1:
- In order to understand which losses are preferred,
- we have to take into account the risk-preferences of the decision maker.

Consequence 1: Different decision makers make different choices.
- Risk-preferences differ between decision makers.

Consequence 2: We need to model qualitative preferences using quantitative models.
- For example: in chapter 1 we used utility functions are used to model risk-preferences,
- and expected utilities to order random losses.
Yaari’s theory of choice under risk is an alternative for the expected utility theory.

- Risk preferences of decision makers are captured in a distortion function g.
- A decision maker always maximizes his distorted wealth level.

Risk preferences: Distortion functions

- Instead of utility functions.
- We keep the outcomes of the losses, but consider subjective probabilities.

Risk ordering: Distorted wealth levels

- Instead of expected utility.
- In Yaari’s theory, we compare expectations, but under a distorted probability measure.
Distortion risk measures:
- Generate coherent risk measures: See later chapter.

Sublinear expectations:
- A distorted expectation is a generalization of the classical expectation.
- It is an expectation under distorted probability levels.
- Under some continuity conditions, a distorted expectation is a classical expectation under a new probability measure.

Bid-ask pricing:
- A fundamental approach to justify bid-ask prices in asset pricing.
1 – Distorted expectations

Introduction

- Consider the gains \(X \) and \(Y \):

 \[P[X = 1] = 1 \quad \text{and} \quad P[Y = x] = \begin{cases}
 0.01, & x = 0; \\
 0.89, & x = 1; \\
 0.1, & x = 5.
\end{cases} \]

- Consider the gains \(V \) and \(W \):

 \[P[V = x] = \begin{cases}
 0.89, & x = 0; \\
 0.11, & x = 1.
\end{cases} \quad \text{and} \quad P[W = x] = \begin{cases}
 0.9, & x = 0; \\
 0.1, & x = 5.
\end{cases} \]

- Empirical studies reveal that many people prefer \(X \) over \(Y \), but \(W \) over \(V \).
Expected utility maximizers who prefer X over Y, will also prefer V over W.

However, if a decision maker prefers X over Y, but W over V, then he/she can never be expected utility maximizers.

Paradox in expected utility theory.
A distortion function is a non-decreasing function $g : [0, 1] \rightarrow [0, 1]$ such that $g(0) = 0$ and $g(1) = 1$.

- g is non-decreasing implies that g is continuous and differentiable on $[0, 1]$, almost everywhere.
- A distortion function is said to be concave (convex) if it is concave (convex) on $[0, 1]$ without jumps in 0 and 1.
- Concave and convex distortion functions are continuous on $(0, 1)$.
Consider a random variable X. The tail probability $\bar{F}_X(x)$ is given by

$$\bar{F}_X(x) = P [X > x].$$

The function g is used to distort the (tail) probabilities:

- If g is concave: $g (\bar{F}_X(x)) \geq \bar{F}_X(x)$.
- If g is convex: $g (\bar{F}_X(x)) \leq \bar{F}_X(x)$.
- **Exercise**: Prove these inequalities.
Consider a random variable X:

$$X \overset{d}{=} LN(\mu, \sigma^2).$$

Tail probabilities:

$$F_X(x) = \mathbb{P}[X > x] = \Phi \left(\frac{\mu - \ln x}{\sigma} \right),$$

where Φ is the cdf of a standard normal distribution.

▶ Exercise: Prove this equality.

Distorted tail probabilities:

▶ $g(x) = \sqrt{x}$.

$$g(F_X(x)) = \sqrt{\Phi \left(\frac{\mu - \ln x}{\sigma} \right)}.$$
Distorted expectations

Distortion function: Example

- Parameters: $\mu = 4$ and $\sigma = 0.5$.
- Mean: $E[X] = e^{\mu + \frac{\sigma^2}{2}} \approx 62$.
Consider a distortion function g. The distorted expectation of the r.v. X, notation $\rho_g[X]$, is

$$\rho_g[X] = -\int_{-\infty}^{0} [1 - g(F_X(x))] \, dx + \int_{0}^{+\infty} g(F_X(x)) \, dx,$$

provided both integrals are finite.

- The functional ρ_g is called the \textit{distortion risk measure} (with distortion function g).
- Both integrals are assumed to be finite, which implies that $\rho_g[X]$ is finite.
The expectation of X:

$$E[X] = -\int_{-\infty}^{0} (1 - F_X(x)) \, dx + \int_{0}^{+\infty} F_X(x) \, dx.$$

Distorted expectation of X:

$$\rho_g[X] = -\int_{-\infty}^{0} \left[1 - g \left(F_X(x)\right)\right] \, dx + \int_{0}^{+\infty} g \left(F_X(x)\right) \, dx.$$

Interpretation:

- If g is left continuous, then $g \left(F(x)\right)$ is non-increasing and right continuous with values in $[0, 1]$.

- The distorted expectation $\rho_g[X]$ can be interpreted as an expectation of X, but the tail probabilities $F_X(x)$ are replaced by the distorted tail probabilities $g \left(F_X(x)\right)$.
2 – Distorted expectations

Graphical interpretation for concave \(g \)

\[
E[X] = I - (II + II') \quad \rho_g[X] = (I + I') - II \geq E[X]
\]
A distortion function is **continuous** if it is continuous on \([0, 1]\).

- **Example**
 - Distortion function

 \[g(q) = q, \quad \text{for} \quad q \in [0, 1]. \]

 - Corresponding distorted expectation

 \[\rho_g[X] = \mathbb{E}[X]. \]

 - The distortion function \(g \) doesn’t distort the probabilities.

Concave/convex functions

- If \(g \) is concave: \(\rho_g[X] \geq \mathbb{E}[X]. \)

- If \(g \) is convex: \(\rho_g[X] \leq \mathbb{E}[X]. \)

- **Exercise**: Prove these inequalities.
Theorem

For any distortion function g and any r.v.’s X and Y, the following properties hold:

1. **Positive homogeneity:**

 $$ \rho_g [aX] = a \rho_g [X], \quad a > 0; $$

2. **Translation invariance:**

 $$ \rho_g [X + b] = \rho_g [X] + b, \quad b \in \mathbb{R}; $$

3. **Preserving stochastic dominance:**

 if $F_X(x) \geq F_Y(x)$, for all $x \in \mathbb{R} \Rightarrow \rho_g [X] \leq \rho_g [Y].$
Consider the following r.c. distortion function
\[g(q) = \mathbb{I}(q \geq 1 - p), \quad 0 \leq q \leq 1. \]

Corresponding distorted expectation:
\[\rho_g[X] = F_X^{-1+}(p). \]

The condition that \(g \) is r.c. is essential:
- Consider the l.c. distortion function
 \[g(q) = \mathbb{I}(q > 1 - p), \quad 0 \leq q \leq 1. \]
- Corresponding distorted expectation:
 \[\rho_g[X] = F_X^{-1}(p). \]
Dual distortion function

Definition

The dual distortion function \bar{g} of the distortion function g is

$$\bar{g}(q) = 1 - g(1 - q).$$

- \bar{g} is again a distortion function.
- Right and left continuous functions

$$g \text{ is r.c. } \iff \bar{g} \text{ is l.c.}$$

$$g \text{ is l.c. } \iff \bar{g} \text{ is r.c.}$$

- Convex and concave functions

$$g \text{ is convex } \iff \bar{g} \text{ is concave}$$

$$g \text{ is concave } \iff \bar{g} \text{ is convex}$$
3 – Dual distortion function

Example: concave distortion function
Consider a r.v. X with cdf F_X.

The distortion function g is defined as

$$g(q) = \mathbb{1}(q > 1 - p).$$

Determine the dual distortion function \bar{g}.

Compare the distorted expectations $\rho_g[X]$ and $\rho_{\bar{g}}[X]$.
Theorem

For any r.v. X, we have that

$$\rho_g[X] = -\rho_g[-X],$$

and also

$$\rho_g[X] = -\rho_g[-X].$$

Exercise: Prove this theorem.
Comparing distorted expectations

- The distorted expectation hypothesis:

\[
\text{Prefer loss } X \text{ over } Y \Leftrightarrow \rho_g[w - X] \geq \rho_g[w - Y].
\]

- A decision maker values wealth levels by using a distortion function \(g \).
- The decision maker is said to be a distorted expectation maximizer.

- Preferences are independent of initial wealth:

\[
\rho_g[w - X] = w + \rho_g[-X].
\]

- Preferences are invariant up to positive linear transformations.

Dual theory:

- Instead of using utility functions, we now use distorted expectations.
- In the dual theory, we compare monetary units, while in expected utility theory we compare utility levels.
The independence axiom

- **Axiomatic framework: Yaari (1987)**
 - Any decision maker whose behavior is in accordance with a given set of ‘rational’ axioms, is a **distorted expectation maximizer**.
 - The set of axioms is the same as in expected utility theory, except for the independence axiom.

- For any random losses X, Y and Z, their comonotonic modification X^c, Y^c and Z^c and $p \in [0, 1]$, one has that

 Prefer loss X over loss Y
 \[\Rightarrow \text{ Prefer loss } pX^c + (1 - p)Z^c \text{ over loss } pY^c + (1 - p)Z^c \]

- **Interpretation:** Adding the loss Z^c to your portfolio cannot serve as a **hedge** for the losses X^c and Y^c.
Consider a decision maker with initial wealth w, facing a loss X.

Expected terminal wealth level:

$$
\mathbb{E}[w - X] = \int_0^1 F_{w-X}^{-1} (1 - q) dq.
$$

Expected utility level of terminal wealth (u is r.c.):

$$
\mathbb{E}[u(w - X)] = \int_0^1 u \left(F_{w-X}^{-1} (1 - q) \right) dq.
$$

Distorted expectation of terminal wealth (g is l.c.):

$$
\rho_g[w - X] = \int_0^1 F_{w-X}^{-1} (1 - q) dg(q).
$$
Risk averse decision makers

- **Definition:**
 - A decision maker is *risk averse* if he/she has a convex distortion function.

- If \(g \) is a convex distortion function:
 \[g \left(F_X(x) \right) \leq F_X(x). \]

- The tail probabilities related to random levels of wealth are *underestimated*.

- **Attitude towards risk:**
 - Prefer certainty over uncertainty:
 \[\rho_g[w - X] \leq \rho_g[w - \mathbb{E}[X]]. \]

- **Attitude towards wealth:**
 - The satisfaction of gaining an additional Euro is *independent* of the initial wealth level.
Distorted expectation theory and insurance

- **Risk averse individual:**
 - facing a loss $X \geq 0$,
 - distortion function g,
 - initial wealth w.

- **Risk averse insurer:**
 - accepts X for a premium P,
 - distortion function G,
 - initial wealth W.

Under what conditions is an insurance contract feasible?
- From the viewpoint of the individual,
- from the viewpoint of the insurer.
Risk averse individual:
- facing a loss $X \geq 0$,
- distortion function g,
- initial wealth w.

Risk averse insurer:
- accepts X for a premium P,
- distortion function G,
- initial wealth W.

Under what conditions is an insurance contract feasible?
- From the viewpoint of the individual,
- from the viewpoint of the insurer.
Consider a decision maker with distortion function g, having initial wealth w and facing a loss X. He can buy insurance for a premium P. He is only willing to underwrite the insurance if

$$\rho_g[w - P] \geq \rho_g[w - X].$$

Maximal premium P^M he is willing to pay follows from:

$$\rho_g[w - P^M] = \rho_g[w - X].$$

Solution:

$$P^M = -\rho_g[-X] = \rho_{\bar{g}}[X].$$

Risk aversion leads to:

$$P^M \geq \mathbb{E}[X].$$
Consider an insurer with distortion function G, having initial wealth W.

The insurer is willing to insure a loss X at a premium P if

$$\rho_G[W] \leq \rho_G[W + P - X].$$

Minimal premium P^m he requires follows from:

$$\rho_G[W] = \rho_G[W + P^m - X].$$

Solution:

$$P^m = -\rho_G[-X] = \rho_G[X].$$

Risk aversion leads to

$$P^m \geq E[X].$$

The contract is feasible if $P^m \leq P \leq P^M$.
Theorem (Additivity for comonotonic risks)

If g is a distortion function and $(X_1^c, X_2^c, \ldots, X_n^c)$ is a comonotonic modification of (X_1, X_2, \ldots, X_n), then

$$
\rho_g[S^c] = \sum_{i=1}^{n} \rho_g[X_i].
$$

Theorem

If g is a distortion function and (X_1^c, X_2^c) is a comonotonic modification of (X_1, X_2), then

$$
\rho_g[w - X_1^c - X_2^c] = \rho_g[w - X_1^c] + \rho_g[w - X_2^c] - w.
$$